Читаем Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews полностью

Чтобы обратить внимание читателей к этим двум наблюдениям, их выделили жирным шрифтом. При этом можно увидеть, что в то время как стандартные остатки в августе 1998 г. оказались равны 2,931979 и были меньше трех стандартных отклонений, то в сентябре 1998 г. их величина составила 4,922042, приблизившись тем самым к пяти стандартным отклонениям. Таким образом, с уверенностью можно констатировать, что сентябрьский остаток представляет собой выброс — это весьма осложняет получение (по применяемой статистической модели) точного прогноза на октябрь 1998 г. Впрочем, выбросом можно считать и остатки, полученные в августе 1998 г., если снизить уровень для выбросов до двух стандартных отклонений.

Помимо стандартных остатков для анализа выбросов используются также стьюдентизированные остатки, которые представляют собой частное от деления обычного остатка на оценку его стандартного отклонения. Хотя теоретически все случайные ошибки, полученные после решения уравнения регрессии, считаются независимыми и имеющими одну и ту же дисперсию, однако в действительности конкретные остатки в силу своего различенного положения во временном ряду отнюдь не независимы и, следовательно, не имеют одинаковых дисперсий[14]. Поэтому чтобы учесть эту разницу в дисперсии остатков, их необходимо стьюдентизировать, т. е. оценить с учетом их положения в выборке. Формулу по расчету стьюдентизированных остатков мы дадим далее, а сейчас приведем алгоритм действий, с помощью которого можно быстро получить стьюдентизированные остатки. Правда, в Excel такая возможность отсутствует, но в последних версиях EViews эту процедуру можно реализовать с помощью статистики влияния остатков (INFLUENCE STATISTICS). Чтобы уяснить, как это делается, надо прочитать алгоритм действий № 17.

Алгоритм действий № 17Диагностика в EViews влияния стьюдентизированных остатков на уравнение регрессии для прогностической моделиUSDOLLAR = а x USDOLLAR(-1) + b x USDOLLAR(-2)Шаг 1. Как получить стьюдентизированные остатки

После решения уравнения регрессии (на основе рыночных данных по курсу доллара за период с июня 1992 г. по сентябрь 1998 г.) в строке EQUATION выбираем опции VIEW/STABILITY DIAGNOSTICS/INFLUENCE STATISTICS. В результате на экране появляется диалоговое мини-окно INFLUENCE STATISTICS, которое нужно соответствующим образом заполнить, чтобы провести диагностику остатков (рис. 5.6). Чтобы получить как графический, так и табличный вариант по статистике влияния остатков в параметре OUTPUT TYPE (тип выходной статистики), следует установить опции GRAPH (график) и TABLE (таблица). Далее в параметре OUTPUT STATISTICS (выходная статистика) ставим галочку у опции RSTUDENT (стьюдентизированные остатки) и рядом пишем RS — название файла, который будет помещен в рабочий файл.

Шаг 2. Интерпретация влияния стьюдентизированных остатков на точность прогноза

В результате шага 1 получены диаграмма (она приведена на рис. 5.7) и табл. 5.8. Интерпретация диаграммы довольно проста, поскольку на ней представлен график значений стьюдентизированных остатков, который с обеих сторон выделен пунктирной линией и обозначает область допустимых значений, равных ± 2. Когда стьюдентизированные остатки выходят за пределы этой пунктирной линии, в этом наблюдении их можно считать выбросами. Легко заметить, что особенно велик стьюдентизированный остаток, полученный в сентябре 1998 г.

В таблице 5.8 приведена часть полученных с помощью EViews значений стьюдентизированных остатков (за период с января 1997 г. по сентябрь 1998 г.). При этом стьюдентизированные остатки, которые считаются выбросами (их величина больше или меньше 2), при выводе итогов обозначаются EViews красным шрифтом (в таблице они подчеркнуты). При этом область допустимых значений определяется с помощью уже известной нам t-статистики. В частности, выбросами считаются остатки, которые получены не только в сентябре, но и в августе 1998 г. Если сравнить стандартные остатки из табл. 5.7 со стьюдентизированными остатками, то легко заметить, что значения последних — за счет выросшей дисперсии между наблюдениями — наиболее сильно отличаются от значений первых для августа и сентября 1998 г.

Некоторые математические подробности по расчету стьюдентизированных остатков в EViews

Теоретически все случайные ошибки предполагаются независимыми и имеющими одну и ту же дисперсию 2, однако в действительности конкретные остатки отнюдь не независимы и, следовательно, не имеют одинаковых дисперсий. В действительности дисперсия остатков зависит не только от величины 2, но и от hi — i-го диагонального элемента матрицы вида Хt(Х`Х)-1Хt, с которой мы уже познакомились в главе 3.

Стьюдентизированные остатки в EVews рассчитываются по формуле

где еt — остаток для конкретного наблюдения, полученный по уравнению регрессии, построенному с учетом всех наблюдений временного ряда;

Перейти на страницу:

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Богатый пенсионер
Богатый пенсионер

Есть ли жизнь после пенсии? Безусловно, но ее качество зависит только от вас. Каждому, независимо от возраста, важно понимать суть пенсионной реформы. С этой книгой вы сможете:• изучить основы пенсионной реформы и определить, как увеличить страховую и накопительную части вашей пенсии;• создать себе прибавку к государственной пенсии;• выбрать ЛУЧШЕЕ из всего многообразия инвестиционных инструментов, доступных частному инвестору.Как это сделать? В книге рассмотрены все вопросы, касающиеся пенсионного обеспечения. В первой части вы познакомитесь с содержанием пенсионной реформы, узнаете структуру государственной пенсии, а также способы влияния на ее размер. Во второй части рассмотрены инвестиционные инструменты для получения негосударственной пенсии: накопительные страховые программы, негосударственные пенсионные фонды, паевые инвестиционные фонды, общие фонды банковского управления, игра на бирже, недвижимость, драгметаллы и др. Третья часть книги посвящена самому главному – правилам выбора подходящих инвестиционных инструментов для будущих пенсионеров. Жизнь на пенсии может быть богатой, а сделать ее такой поможет эта книга.

Наталья Юрьевна Смирнова , Сергей Владимирович Макаров

Финансы / Личные финансы / Финансы и бизнес