Читаем Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews полностью

Чтобы провести исследование AR-структуры на импульсный ответ (IMPULSE RESPONSE), нам необходимо в диалоговом мини-окне ARMA DIAGNOSTIC VIEWS (посмотреть диагностику ARMA) выбрать опции IMPULSE RESPONSE и TABLE, а также определить предполагаемую величину импульса (внешнего шока или величину отклонения курса доллара) (рис. 5.3). При этом по умолчанию используется опция ONE STANDARD DEVIATION (одно стандартное отклонение), а длительность проводимого теста ограничивается 24 периодами (см. опцию PERIODS). Однако при необходимости количество тестируемых периодов можно изменить, как, впрочем, изменить и заданную величину импульса. В последнем случае надо в опции IMPULSE выбрать вариант USER SPECIFIED (по усмотрению пользователя) и самому установить требуемую величину начального импульса (внешнего шока).

Шаг 2. Интерпретация функции импульсного и накопленного импульсного ответа

В опции IMPULSE мы решили выбрать вариант по умолчанию — ONE STANDARD DEVIATION (одно стандартное отклонение). В случае выбора этой опции исходная величина внешнего шока приравнивается к стандартной ошибке коэффициента регрессии факторной лаговой переменной, т. е. к стандартной ошибке коэффициента регрессии USDOLLAR(-1) = 0,06527. При этом предполагается, что на первом шаге, когда внешний шок отсутствует, величина импульсного ответа равна стандартной ошибке уравнения регрессии -0,817803 (см. табл. 4.1).

В результате получим табл. 5.3, в которой содержится информация, характеризующая величину стандартной ошибки импульсного ответа AR-структуры на рост инновационной неопределенности, значения которой помещены в двух разделах Std. Err. Если бы вместо опции ONE STANDARD DEVIATION была бы выбрана опция USER SPECIFIED (по усмотрению пользователя), то тогда вместо величины инновационной неопределенности мы получили бы в разделах Std. Err. величину внешнего шока в виде стандартных ошибок факторной переменной, нарастающей по мере повышения инновационной неопределенности.

Таким образом, величина стандартной ошибки функции импульсного ответа позволяет оценить, как модель ARMA реагирует на единовременное шоковое воздействие (однократное резкое изменение курса доллара). В таблице 5.3 также приводится величина стандартной ошибки функции накопленного импульсного ответа. Последнюю функцию можно интерпретировать и как ответ на очередной текущий импульс (шоковое воздействие), но при условии, что аналогичные шоковые воздействия происходят непрерывно в течение всего исследуемого времени, начиная с 1-го периода.

Важным свойством стационарных моделей является то обстоятельство, что у них уровень инновационной неопределенности, как и величина ответа на импульс, асимптотически — по мере нарастания выборки (количества периодов) — стремятся к нулю. Это свидетельствует об устойчивости стационарных процессов к единовременным шоковым воздействиям. Причем в случае анализа стационарного AR-процесса EViews дает внизу вывода итогов асимптотическую оценку как величины импульсного ответа, так и уровня инновационной неопределенности с указанием, что они равны нулю. Однако в табл. 5.3 этих оценок нет, поскольку исследуется нестационарный процесс, в котором обе эти величины постоянно нарастают, не имея при этом четко ограниченных пределов.

Как легко увидеть в табл. 5.3, в 1-м периоде величина инновационной неопределенности незначительна, а ошибка импульсного ответа равна стандартной ошибке уравнения регрессии. Во 2-м периоде инновационная неопределенность возрастает в силу воздействия внешнего шока, величина которого приравнивается к стандартной ошибке коэффициента регрессии независимой лаговой переменой USDOLLAR(-1). Далее в последующие периоды величина инновационной неопределенности (см. оба столбца Std. Err.) нарастает как в функции импульсного, так еще больше и в функции накопленного импульсного ответа. Так, уровень инновационной неопределенности в функции импульсного ответа увеличивается с 0,03962 в 1 — м периоде до 0,16794 в 25-м периоде; соответственно в функции накопленного импульсного ответа эти цифры выросли с 0,03962 в 1-м периоде до 3,28261 в 25-м периоде.

Если при тестировании AR-структуры нестационарного процесса увеличить количество исследуемых периодов, то в результате уровень инновационной неопределенности и величина стандартной ошибки импульсного ответа в нестационарной модели еще больше вырастут к концу последнего периода.

Так, если в диалоговом мини-окне ARMA DIAGNOSTIC VIEWS в опции PERIODS установить 50 периодов вместо используемых по умолчанию 24, то уровень инновационной неопределенности в функции импульсного ответа будет равен 0,27308, а в функции накопленного импульсного ответа — 8,65349. Соответственно при 100 периодах эти цифры в последнем периоде будут существенно выше и равны 0,56117 и 28,4379.

Шаг 3. Построение графика функций импульсного и накопленного импульсного ответа
Перейти на страницу:

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Богатый пенсионер
Богатый пенсионер

Есть ли жизнь после пенсии? Безусловно, но ее качество зависит только от вас. Каждому, независимо от возраста, важно понимать суть пенсионной реформы. С этой книгой вы сможете:• изучить основы пенсионной реформы и определить, как увеличить страховую и накопительную части вашей пенсии;• создать себе прибавку к государственной пенсии;• выбрать ЛУЧШЕЕ из всего многообразия инвестиционных инструментов, доступных частному инвестору.Как это сделать? В книге рассмотрены все вопросы, касающиеся пенсионного обеспечения. В первой части вы познакомитесь с содержанием пенсионной реформы, узнаете структуру государственной пенсии, а также способы влияния на ее размер. Во второй части рассмотрены инвестиционные инструменты для получения негосударственной пенсии: накопительные страховые программы, негосударственные пенсионные фонды, паевые инвестиционные фонды, общие фонды банковского управления, игра на бирже, недвижимость, драгметаллы и др. Третья часть книги посвящена самому главному – правилам выбора подходящих инвестиционных инструментов для будущих пенсионеров. Жизнь на пенсии может быть богатой, а сделать ее такой поможет эта книга.

Наталья Юрьевна Смирнова , Сергей Владимирович Макаров

Финансы / Личные финансы / Финансы и бизнес