5.1. Тестирование авторегрессионного процесса на стационарность путем нахождения обратных единичных корней
В главе 4 мы убедились, что с помощью уравнения авторегрессии USDOLLAR
Однако сначала давайте посмотрим, насколько устойчива полученная прогностическая модель к внезапному росту волатильности на валютном рынке? Чтобы убедиться в устойчивости этой прогностической модели, необходимо проверить авторегрессионный процесс (AR-структуру этой модели) на стационарность. В EViews провести эту проверку достаточно несложно. При этом следует иметь в виду, что в ходе решения уравнения регрессии (см. алгоритм действий № 6 «Как решить уравнение регрессии в EViews») диалоговое мини-окно EQUATION SPECIFICATION заполняется иначе, а именно вместо записи USDollar USDollar(-l) USDollar(-2) в него надо вставить формулу
USDollar AR(1) AR(2), (5.1)
где AR(1) — переменная с лагом в один месяц;
AR(2) — переменная с лагом в два месяца.
Формула (5.1) по своей математической сути аналогична формуле USDollar USDollar(-l) USDollar(-2), однако ввод в EViews уравнения по этой формуле дает возможность оценить авторегрессионный процесс на стационарность. Естественно, что при выводе итогов мы получим данные, практически аналогичные тем, которые уже содержатся в табл. 4.1. Одно из незначительных отличий заключается в том, что при выводе итогов ранее использовавшиеся обозначения переменных в виде USDOLLAR(-l) и USDOLLAR(-2) будут заменены соответственно на AR(1) и AR(2). Но самое главное заключается в том, что помимо уже известной нам информации в выводе итогов внизу появятся две дополнительные строки, в которых содержится оценка ARMA-структуры этого уравнения на стационарность (табл. 5.1).
Судя по информации в этой таблице, AR-структура этого уравнения оказалась нестационарной, поскольку один из обратных единичных корней оказался больше единицы (подробнее об этом чуть позже). А из нестационарности AR-процесса вытекает вывод, что коэффициенты уравнения авторегрессии будут неустойчивыми. Таким образом, несмотря на довольно неплохие прогностические качества этой статистической модели, ее параметры нельзя назвать достаточно надежными к воздействию внешних «шоков», т. е. к случаям внезапного и резкого повышения курса доллара.
Чтобы точнее оценить степень устойчивости этой прогностической модели, продолжим проверку ее авторегрессионной структуры, тем более что EViews позволяет сделать это с минимальными затратами времени.
Шаг 1. Нахождение корней характеристического уравнения
С этой целью в меню оцененного уравнения регрессии следует воспользоваться следующими опциями: VIEW/ARMA STRUCTURE (посмотреть/структуру модели ARMА). В результате чего на экране появится диалоговое мини-окно ARMA DIAGNOSTIC VIEWS (посмотреть диагностику модели ARMА).
Если в этом окне (рис. 5.1) выбрать опции ROOTS (корни) и TABLE (таблица), то в результате у нас получатся обратные корни характеристического уравнения в виде табл. 5.2. Судя по таблице, один из корней (по модулю) этого характеристического уравнения оказался больше единицы.
Шаг 2. Интерпретация корней характеристического уравнения
Чуть ниже мы остановимся подробнее на специфике корней, получаемых в результате решения характеристического уравнения. А сейчас отметим их самое важное для нас свойство: в том случае, когда абсолютные значения (по модулю) всех обратных корней этого уравнения меньше единицы, т. е. лежат внутри единичного круга, то этот авторегрессионный процесс можно считать стационарным, а следовательно, обладающим устойчивыми вероятностными характеристиками. Если же хотя бы один из обратных корней характеристического уравнения больше единицы, т. е. лежит за пределами единичного круга, то тогда авторегрессионный процесс является нестационарным.