Если в мини-окне ARMA DIAGNOSTIC VIEWS выбрать опции ROOTS (корни) и GRAPH (график), то в этом случае мы получим обратные единичные корни характеристического уравнения в наглядном, графическом виде. Судя по рис. 5.2, один из корней находится внутри единичного круга, в то время как другой корень, хотя и расположен довольно близко к этому кругу, но все-таки лежит за его пределами. При этом следует иметь в виду, что горизонтальная ось на этом графике показывает фактические значения полученных обратных корней характеристического уравнения, в то время как вертикальная ось — их воображаемые значения.
Теперь остановимся несколько подробнее на процедуре получения обратных единичных корней, с помощью которой в EViews доказывается стационарность AR-процессов. В главе 4 уже говорилось, что в основе теории единичного корня лежит довольно простая формула (4.4), которая считается базовой для понимания стационарности в уравнениях авторегрессии:
При этом уравнение авторегрессии 1-го порядка считается стационарным в том случае, когда коэффициент регрессии 1. Соответственно, если 1, то оно считается нестационарным, а следовательно, волатильность в процессе авторегрессии с течением времени может нарастать и стремиться к бесконечности.
Применительно к авторегрессионным процессам, содержащим большое количество лаговых переменных, наличие стационарности предполагает следующее. AR-процессы считаются стационарными в том случае, если в уравнении (5.2) коэффициенты
Например, для решенного нами уравнения авторегрессии USDOLLAR = 1,321092 x USDOLLAR(-l) — 0,319415 x USDOLLAR(-2) (см. формулу (4.3)) характеристическое уравнение приобретает следующий вид:
1 — 1,321092
Корни в этом уравнении находятся с помощью известной со школьной скамьи формулы по нахождению корней в многочлене второй степени:
Отсюда следует, что первый единичный корень
По сути, тот факт, что вместо единичных корней мы находим обратные единичные корни, ничего не меняет, однако — и это вполне понятно — при этом требования к тестированию стационарности AR-процесса формулируются противоположным образом. В этом случае авторегрессионный процесс считается стационарным тогда и только тогда, когда абсолютные значения (по модулю) всех обратных корней его характеристического уравнения лежат в пределах единичного круга. Поскольку один из обратных корней больше единицы, то, следовательно, AR-процесс, описанный формулой 1,321092 x USDOLLAR(-l) — 0,319415 x USDOLLAR(-2), нельзя считать стационарным.
5.2. Тестирование AR-структуры на стационарность с помощью функции импульсного ответа
Теперь остановимся еще на одном важном инструменте, который дает EViews для оценки устойчивости статистических моделей к внешним шокам (в нашем случае под ними подразумеваются резкие скачки курса доллара). Это тестирование AR-структуры авторегрессионного процесса на импульсный ответ (IMPULSE RESPONSE). При этом у нас появляется возможность получить также и оценку инновационной неопределенности, возникающей в этом авторегрессионном процессе в результате воздействия внешнего шока.