Читаем Как предсказать курс доллара. Поиск доходной стратегии с языком R полностью

Отдельный элемент можно вставить в матрицу, указав в квадратных скобках положение (номер строки и номер столбца) куда его нужно вставить и приравняв его к определенному значению:

> Матрица2[3,2]<– NaN

> Матрица2

[,1] [,2] [,3]

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 NaN 13

[4,] 4 9 14

[5,] 5 10 15

NaN– по-английски означает Not-a-Number-«не число». NaN получается в результате: деления 0 на 0, деления 0 на бесконечность, деления бесконечности на бесконечность, умножения 0 на бесконечность, сложения бесконечности с бесконечностью противоположного знака, вычисления квадратного корня отрицательного числа, логарифмирования отрицательного числа, а также в результате всех математических операций с использованием NaN в качестве одного из операндов. В R бесконечность обозначается как Inf. Например, в результате деления Inf на Inf получаем NaN:

> Inf/Inf

[1] NaN

Чтобы NAN в Матрице 2 заменить на нуль нужно ввести такой код:

> Матрица2[is.na(Матрица2)]<-0

# по-русски: Матрица2[является. nan (Матрица2)]<-0

> Матрица2

[,1] [,2] [,3]

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 0 13

[4,] 4 9 14

[5,] 5 10 15

Отдельный столбец матрицы можно удалить, указав со знаком минус номер удаляемого столбца:

> Матрица2[, -2]

#Матрица2[, -2 столбец] – перед запятой вместо номера строки оставляют пустое место

[,1] [,2]

[1,] 1 11

[2,] 2 12

[3,] 3 13

[4,] 4 14

[5,] 5 15

Отдельный столбец можно вставить в матрицу, указав в квадратных скобках столбец, куда его нужно вставить, и приравняв его к вектору вставляемых значений:

> Матрица2[, 2]<-16:20

# Матрица2[, 2 столбец] <-16:20

> Матрица2

[,1] [,2] [,3]

[1,] 1 16 11

[2,] 2 17 12

[3,] 3 18 13

[4,] 4 19 14

[5,] 5 20 15

Отдельную строку матрицы можно удалить, указав в квадратных скобках со знаком минус номер удаляемой строки:

> Матрица2[-3, ]

# Матрица2[-3 строка, ] – после запятой вместо номера столбца оставляют пустое место

[,1] [,2] [,3]

[1,] 1 16 11

[2,] 2 17 12

[3,] 4 19 14

[4,] 5 20 15

Отдельную строку матрицы можно вставить, указав ее номер в квадратных скобках, и приравняв ее к вектору вставляемых определенных значений

> Матрица2[3, ] <-c(3,8,13)

# Матрица2[3 строка, ] <-c(3,8,13)

> Матрица2

[,1] [,2] [,3]

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

R также работает и с массивами данных (array), которые сходны с матрицами, но могут иметь данные с более чем двумя измерениями. Очевидно, что массивы данных – это просто расширенные матрицы. Как и в матрицах, все элементы массива должны иметь одинаковый тип данных. Массивы данных создаются при помощи функции array. Например, массив из последовательности чисел 1,2 …30, состоящий из двух матриц с тремя строками и пятью столбцами можно создать следующим образом:

> Мой.Массив<– array(1:30, dim=c(3,5,2))

# аргумент dim указывает на размер массива данных

# dim =c (3,5,2) создает из вектора 1:30 массив данных из 3 строк, 5 столбцов и 2 матриц.

# если бы R понимал по-русски, то эту команду можно было бы ввести так:

# Мой.Массив<– множество(1:30, размер=объединить(3,5,2))

> Мой.Массив

, , 1

[,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 13

[2,] 2 5 8 11 14

[3,] 3 6 9 12 15

, , 2

[,1] [,2] [,3] [,4] [,5]

[1,] 16 19 22 25 28

[2,] 17 20 23 26 29

[3,] 18 21 24 27 30

> dim(Мой.Массив)

[1] 3 5 2

Заметим, что в функции array в скобках сначала дается вектор 1:30, из которого создается массив данных, затем следует выражение dim=c(3,5,2), предписывающее с помощью функции объединения создать массив данных, соответственно, из трех строк, пяти столбцов и двух матриц.

Отдельный элемент массива данных можно извлечь, обозначив его положение (номер строки, номер столбца и номер матрицы) в квадратных скобках. Например, цифру, стоящую в третьей строке и третьем столбце второй матрицы можно извлечь следующим образом:

Мой.Массив[3,3,2]

> Мой.Массив[3,3,2]

[1] 24

Таблицы данных, которые в отличие от матриц могут состоять из различных типов данных, широко используются в R. Таблицы данных создаются при помощи функции data.frame. Покажем, как это делается на конкретном примере. Сначала создадим три вектора данных, из которых один будет текстовый, а два других цифровых:

> Успеваемость <-c('Отличники', 'Хорошисты' , 'Троечники', 'Двоечники')

> Успеваемость

[1] "Отличники" "Хорошисты" "Троечники" "Двоечники"

> Студенты<-c(2, 5,10,2)

> Студенты

[1] 2 5 10 2

> Студентки <-c(3,7,14,1)

> Студентки

[1] 3 7 14 1

Теперь создаем таблицу с помощью функции data.frame, которую назовем Моя.Таблица:

> Моя.Таблица <– data.frame(Успеваемость,Студенты, Студентки)

> Моя.Таблица

Успеваемость Студенты Студентки

1 Отличники 2 3

2 Хорошисты 5 7

3 Троечники 10 14

4 Двоечники 2 1

# узнаем является ли Моя.Таблица таблицей:

> is.data.frame(Моя.Таблица)

# по-русски: таблица.ли(Моя.Таблица)

[1] TRUE

# по-русски ответ: ИСТИНА, то есть этот объект является таблицей

Далее проверим структуру данных Моя.Таблица с помощью следующей функции:

> str(Моя.Таблица)

# по-русски: структура(Моя.Таблица)

'data.frame':      4 obs. of 3 variables:

$ Успеваемость: Factor w/ 4 levels "Двоечники","Отличники",..: 2 4 3 1

$ Студенты : num 2 5 10 2

$ Студентки : num 3 7 14 1

# по-русски: 'data.frame'– таблица

Перейти на страницу:

Похожие книги

1С:Предприятие. Зарплата и кадры. Секреты работы
1С:Предприятие. Зарплата и кадры. Секреты работы

Книга посвящена ведению автоматизированного учета заработной платы на предприятиях, в организациях и учреждениях в программе "1С: Предприятие. Зарплата и Кадры". Излагаются принципы работы системы с учетом всех нормативных требований. Представлены сведения об автоматизированном формировании бухгалтерских проводок и аналитических отчетов широкого спектра, ведении первичной документации и многое другое. Обсуждаются схемы движения документов во всех разделах учета заработной платы, аспекты налогового учета и особенности ведения персонифицированного учета в новом плане счетов. Изложение материала сопровождается практическими примерами, позволяющими быстрее понять и усвоить приемы и методы работы с системой "1С: Предприятие". Рассматриваются ошибки и сложности, которые могут возникнуть при работе с программой. Книга открывает широкие возможности для дальнейшего самостоятельного изучения данной темы.Для менеджеров, бухгалтеров и операторов, не имеющих опыта работы с системой "1С: Предприятие"

Дмитрий Николаевич Рязанцев , Наталья Александровна Рязанцева

Финансы / Личные финансы / Финансы и бизнес