В этой формуле суммирование выполняется по всем парам (Q, Р), для которых разность Р — Q фиксирована и равна Т. Другими словами, график Ксред (T) получается усреднением матрицы К{Т} по ее диагоналям, параллельным главной. Он изображает «усредненную строку» или «усредненный столбец» частотной матрицы. Здесь Т изменяется от 0 до n — 1.
Конечно, экспериментальные графики могут не совпадать с теоретическим.
Если теперь изменить нумерацию «глав» в летописи, то изменятся и числа K(Q, T), поскольку возникает довольно сложное перераспределение «впервые появившихся имен». Следовательно, меняются частотная матрица К{T} и ее элементы. Будем менять порядок «глав» летописи с помощью различных перестановок s.
Каждый раз вычислим новую частотную матрицу K(sT), где sT — новая нумерация, соответствующая перестановке s. Будем искать такой порядок «глав» летописи, при котором все или почти все графики будут иметь вид, показанный на рис. 5.12. В этом случае экспериментальная частотная матрица K{sT} будет наиболее близка к теоретической матрице на рис. 5.13. Тот порядок «глав» летописи, при котором отклонение экспериментальной матрицы от «идеальной» будет наименьшим, и следует признать хронологически правильным и искомым.
Наш метод также позволяет датировать события. Пусть дан какой-то исторический текст Y, о котором известно только, что он рассказывает о неких событиях из эпохи (А, В), уже описанной в тексте X, разбитом на «главы-поколения», причем порядок этих «глав» в летописи X хронологически правилен. Как узнать, какое именно поколение описано в интересующем нас тексте Y? При этом мы хотим использовать только количественные характеристики текстов, не апеллируя к их смысловому содержанию, которое может быть разным или допускать сильно разнящиеся трактовки.
Ответ таков. Присоединим текст Y к совокупности «глав» хроники X, считая при этом У новой «главой» и приписав ей какой-то номер Q. Затем установим оптимальный, хронологически правильный порядок всех «глав» получившейся «летописи». При этом мы найдем правильное место и для новой «главы» Y. В простейшем случае, построив для нее график K(Q, T), можно добиться, меняя ее положение относительно других «глав», чтобы этот график был как можно ближе к идеальному. То положение, которое Y займет среди других «глав», и следует признать за искомое. Тем самым мы датируем события, описанные в Y.
Методика применима и тогда, когда рассматриваются не все имена, а только одно или несколько имен, например, какие-либо «знаменитые имена». Но в этом случае требуется дополнительный анализ, поскольку уменьшение числа используемых имен делает результаты неустойчивыми.
Метод был проверен на больших текстах с большим числом имен и с заранее известной достоверной датировкой. Во всех этих случаях эффективность метода подтвердилась.
4. Принцип дублирования частот
Метод обнаружения дубликатов
Настоящий метод является в некотором смысле частным случаем предыдущего, но ввиду важности для датировки мы выделили прием обнаружения дубликатов в отдельный раздел. Этот метод был предложен А.Т. Фоменко. Затем он был существенно развит в серии работ совместно с Г.В. Носовским.
Пусть интервал времени (А, В) описан в летописи X, разбитой на «главы-поколения» Х(Т). Пусть они в целом занумерованы хронологически верно, но среди них есть два дубликата, то есть две «главы», говорящие об одном и том же поколении, дублирующие, повторяющие друг друга. Рассмотрим простейшую ситуацию, когда одна и та же «глава» встречается в летописи X ровно два раза, а именно с номером Q и с номером R. Пусть Q меньше R. Наша методика позволяет обнаружить и отождествить эти дубликаты. В самом деле, ясно, что частотные графики K(Q, T) и K(R, T) имеют вид, показанный на рис. 5.14.
Первый график явно не удовлетворяет принципу затухания частот. Поэтому нужно переставить «главы» внутри летописи X, чтобы добиться лучшего соответствия с теоретическим, идеальным графиком. Все числа K(R, T) равны нулю, так как в «главе» X(R) нет ни одного «нового имени» — все они уже появились в X(Q). Ясно, что наилучшее совпадение с идеальным графиком на рис. 5.12 получится тогда, когда мы поместим эти два дубликата рядом или просто отождествим их.
Итак, если среди «глав» летописи, в целом занумерованных правильно, обнаружились две «главы», графики которых имеют приблизительно вид графиков на рис. 5.14, то эти «главы», скорее всего, являются дубликатами. То есть, говорят примерно об одних и тех же исторических событиях, и их следует отождествить. Все сказанное переносится на случай, когда есть несколько дубликатов — три и более.