Мой научный ассистент Вон Янь предположил, что в 2050 году натуралисты и экологи будут носить с собой небольшой полевой таксономический набор, который избавит их от необходимости посылать экземпляры на определение музейным специалистам. Тонкий зонд, присоединенный к компьютеру, можно будет ввести в ствол дерева либо тело только что пойманной полевки или кузнечика. За несколько минут компьютер разберется с немногими ключевыми участками ДНК и выдаст вам название вида и любые подробности, которые найдутся в базе данных.
ДНК-таксономия уже преподнесла нам несколько сюрпризов. Мой рассудок классического зоолога протестует почти непереносимо, когда меня просят поверить, что бегемоты ближе к китам, чем к свиньям. Этот вопрос остается спорным, но к 2050 году этот спор будет разрешен в пользу той или другой стороны, как и бессчетное число подобных споров. Они будет разрешены потому, что уже завершатся проекты «Геном бегемота», «Геном свиньи» и «Геном кита» (если к тому времени наши японские друзья не съедят их всех). На самом деле не понадобится даже секвенировать целые геномы, чтобы навсегда устранить таксономические неопределенности.
Одна побочная выгода, влияние которой, вероятно, особенно ощутят в Соединенных Штатах, будет состоять в том, что полные знания о древе жизни оставят еще меньше места для сомнений в реальности самого факта эволюции. Ископаемые станут сравнительно маловажным доказательством, потому что сотни отдельных генов и столько существующих сегодня видов, сколько мы смогли секвенировать, подтверждают показания друг друга о единственном истинном древе жизни.
Говорилось уже достаточно часто, чтобы стать банальностью, но все же повторю: узнать геном животного и разобраться в самом животном — не одно и то же. Вслед за Сиднеем Бреннером (уникальным человеком, по поводу которого я чаще, чем по поводу кого-либо другого, слышал, как люди удивляются, что ему до сих пор не дали Нобелевскую премию[136]
) я буду рассуждать о том, как «вычислить» животное по его геному, разделив этот процесс на три этапа возрастающей сложности. Первый этап был трудным, но эти трудности уже полностью преодолены. Он состоит в том, чтобы вычислить последовательность аминокислот в белке из последовательности нуклеотидов в гене. Второй этап — вычислить трехмерную структуру, в которую сворачивается белок, состоящий из определенной одномерной последовательности аминокислот. Физики считают, что принципиально это возможно, но трудно, и часто получается, что быстрее сделать белок и посмотреть, что с ним будет. Третий этап — вычислить развивающийся эмбрион из его генов и их взаимодействия со своей средой (которую образуют преимущественно другие гены). Это самый трудный этап, но эмбриология (особенно в исследованиях функцийЯ также думаю, что к 2050 году моя мечта о «Генетической книге мертвых» станет реальностью. Логика дарвинизма свидетельствует, что гены любого вида должны составлять своего рода описание древних сред, пройдя через которые этим генам удалось выжить. Генофонд вида — это глина, форму которой придает естественный отбор. Я писал в книге «Расплетая радугу»:
Как песчаные обрывы, которым пустынные ветра придают причудливые формы, как скалы, форму которым придает океан, ДНК верблюда была оформлена выживанием в древних пустынях и в еще более древних морях, чтобы из нее получились современные верблюды. ДНК верблюда говорит (если бы мы только умели читать на ее языке!) о тех изменчивых мирах, в которых жили его предки. Если бы мы только умели читать на этом языке, в тексте ДНК тунца и морской звезды мы прочитали бы слово «море», а в ДНК кротов и дождевых червей можно было бы прочитать слова «под землей».