N + R = 9 + E
D + E = Y + 10
Подставив E + 1 вместо N во втором уравнении, получим E +1 + R = 9 + E и упростим выражение до R = 8.
У нас остается:
E + 1 = N
D + E = Y + 10
Цифры 0 и 1 уже использовались, значит, Y должно быть равным 2 или больше. Следовательно, D + E ≥ 12. Поскольку 9 и 8 уже задействованы, единственно возможные цифры для D и E – либо 6 и 7 (или наоборот), либо 5 и 7 (или наоборот).
Предположим, что это 6 и 7. E – это или 6, или 7. Но мы пришли к противоречию, так как E + 1 = N, а значит, N тоже равно 7, а разные буквы, по условиям задачи, не могут обозначаться одной цифрой. С другой стороны, если E = 7, то уравнение E + 1 = N говорит нам о том, что N = 8, но 8 уже занято буквой R.
Таким образом, D и E – это либо 5 и 7, либо 7 и 5.
Но E не может быть равным 7 по той же причине, что и выше, иначе это означало бы, что N = 8, а это невозможно. Получается, D = 7, E = 5, Y = 2 и N = 6.
К тексту
115. ТРИ ВЕДЬМЫШаг 1.
Буква T должна обозначать 1, поскольку сумма двух шестизначных чисел равна семизначному числу, которое начинается с 1. (Здесь мы можем не принимать во внимание роль четырехзначного числа, так как оно не может превратить общую сумму в семизначное число, начинающееся с цифры 2 или больше. Учитывая, что каждая буква представляет отдельную цифру, максимальное значение для DOUBLE + DOUBLE + TOIL – 987 543 + 987 543 + 6824 = 1 981 910.)
Шаг 2.
Решение головоломок из разряда альфаметики требует повышенного внимания к переносу чисел. В каждом столбце может быть цифра 1, перенесенная из столбца справа. А при сложении в каждом столбце может получиться цифра 1, которую следует перенести в столбец слева.Рассмотрим столбец, соответствующий разряду тысяч. Нам нужно сложить U + U + 1 (вместе с возможным переносом из суммы в столбце сотен), а ответ должен равняться числу, в котором есть буква U в столбце единиц.
Методом исключения можно сделать вывод, что буква U может обозначать только 8, если есть перенос, поскольку 8 + 8 + 1 + 1 = 18, или 9 – если переноса нет, так как 9 + 9 + 1 = 19. В обоих случаях 1 переносится в столбец 10 тысяч.
Шаг 3.
Теперь проанализируем столбец 10 тысяч. Мы знаем, что сумма O + O + 1 равна числу, в столбце единиц которого есть О. Единственно возможное значение – О = 9, притом что 1 переносится в столбец сотен. А поскольку цифра 9 теперь занята, U = 8; согласно нашим вычислениям, перенос требуется и в столбце тысяч.
Шаг 4.
В столбце сотен в ответе есть буква В в разряде единиц. И есть две возможные суммы – либо B + B + 9, либо (если в этом столбце есть перенос) B + B + 9 + 1. В первом случае В – это 1, а во втором В – 0. Поскольку буква T представляет 1, буква В должна иметь значение 0, и в этом столбце есть перенос 1.
Шаг 5.
Значение D должно быть больше 5, но это не может быть 5, иначе R = 1, а это число уже занято. Следовательно, D и R могут иметь только такие значения: D = 6 и R = 3 или D = 7 и R = 5.Аналогичным образом мы можем сократить возможные варианты значений E, L и I.
Остается шесть цифр, которые еще не выбраны: 2, 3, 4, 5, 6 и 7.
Буква E не может обозначать цифру 2, так как тогда L = 8, а цифра 8 уже занята; E также не может иметь значение 5, поскольку оно может быть у L.
Если E = 3, то L = 7, но эта комбинация невозможна при любом наборе значений D и R.
Если E = 7, L = 3 – у нас возникает та же проблема.
Если E = 6, то L = 4 и I = 5, но эта комбинация также невозможна при любом наборе значений D и R.
Однако если E = 4, L = 6 и I = 3, то D = 7 и R = 5. Вот и все.
К тексту
116. ЧЕТ И НЕЧЕТМы решим этот пример на умножение в столбик, разделив его на две части:
[1] EEO × O = EOEO и [2] EEO × O = EOO.
Начнем со второй. Согласно уравнению, произведение трехзначного числа EEO (множимое
) на нечетное число О (множитель) равно трехзначному числу. Множитель не может составлять 1, потому что тогда множимое было бы таким же, как и ответ, а это не так. Множимое начинается с четного числа, а значит, оно должно иметь значение минимум 201. Следовательно, множитель не может быть равен 5 или большему числу, потому что 201 × 5 = 1005, а это четырехзначное число, тогда как наш ответ содержит только три цифры. И мы можем сделать вывод, что множитель равен 3. В этом случае первой цифрой множимого должна быть цифра 2, поскольку если бы это была цифра 4 или больше, то ответ снова был бы четырехзначным. Итак, теперь имеем:
[2] 2EO × 3 = EOO.