Эти суммы одинаковые! Такой вывод кажется довольно неожиданным, пока вы не проанализируете вычисления по столбцам. Может, даже целесообразно произнести это вслух. Первый столбец суммы слева содержит одну девятку, или 1 × 9; первый столбец суммы справа содержит девять единиц, или 9 × 1. Второй столбец суммы слева содержит две восьмерки, или 2 × 8; второй столбец суммы справа содержит восемь двоек, или 8 × 2. И так далее. Цифры в каждом столбце дают в сумме одно и то же число, а значит, общие суммы одинаковы.
Если бы нам требовалось записать все эти числа в столбик, как при сложении, то надо было бы знать, что при использовании подхода Гаусса каждый столбец, соответствующий разряду единиц, десятков, сотен и тысяч, содержит одни и те же цифры – единицы, двойки, тройки и четверки, хотя порядок цифр в каждом столбце будет разным. Подсчитать сумму цифр в каждом столбце не составит труда: (6 × 1) + (6 × 2) + (6 × 3) + (6 × 4) = 6 + 12 + 18 + 24 = 60. Следовательно, общая сумма равна:
Возможно, вы решили эту задачу одним из двух способов. Я буду называть первый способ методом Алкуина, поскольку он похож на тот, каким ученый образовал пары чисел при вычислении суммы чисел от 1 до 100, а второй способ – методом Гаусса.
55 + (55 + 10) + (55 + 20) + … + (55 + 90).
Что дает:
(10 ×55) + (10 + 20 + 30 + … + 90)
или
550 + 10(1 + 2 + 3 + … + 9) = 550 + (10 × 45) = 550 + 450 = 1000.
9 – 5 = 4
×
6 ÷ 3 = 2
=
1 + 7 = 8.
27 × 3 = 81.
6 × 9 = 54.
Сумма чисел в каждом круге равна 11.
Сумма чисел в каждом круге равна 13.
Сумма чисел в каждом круге равна 14.
Существует много вариантов приведенных ниже решений.
От 2 до 9:
От 10 до 20:
От 21 до 30:
От 31 до 40:
От 41 до 50:
(Выражаю благодарность сайту mathforum.org
, где я позаимствовал эти решения.)Дроби прекрасно сокращаются, поскольку
Если в условиях задачи сказано, что дети способны решить ее быстрее взрослых, то это говорит о том, что для ее решения не требуется знания математики, нужно лишь распознать простые визуальные закономерности. Увидев список чисел, взрослые автоматически начинают размышлять в категориях чисел. Однако в данной головоломке числа – всего лишь фигуры, не имеющие никакого математического смысла. Подсчитайте количество петель в каждом из четырехзначных чисел: полученное количество и есть число справа от знака равенства. У символа 8 две петли, у 0 одна, у 9 одна, а значит, число 8809 содержит шесть петель. Следовательно, число 2581 имеет 2 петли.
Надеюсь, вы не слишком долго думали. Здесь действует простая закономерность. Каждое очередное число можно получить, умножив две цифры предыдущего числа:
7 × 7 = 49; 4 × 9 = 36; 3 × 6 = 18.
Таким образом, следующее число – 1 × 8 = 8.
Здесь закономерность состоит в следующем: нужно возвести каждую цифру числа в квадрат и сложить результаты:
42
= 15; 12 + 62 = 37; 32 + 72 = 58.И так далее, пока не будет обнаружено, что отсутствующее число – 20, поскольку 42
+ 22 = 20 и 22 + 02 = 4.Я довольно долго изучал фрагмент 4 → 16, прежде чем понял, что здесь требуется возведение в квадрат. На следующем этапе необходимо было понять, как возведение в квадрат может привести от 16 к 37. А затем все пошло своим чередом.
Эта головоломка покажется по-настоящему сложной, если вы еще не встречались с подобными задачами. Кажется, что здесь нет никакой арифметической закономерности. Однако если произносить слова, обозначающие эти числа, то можно заметить, что слова становятся все длиннее:
Ten (10)
Nine (9)
Sixty (60)
Ninety (90)
Seventy (70)
Sixty-six (66)