Шаг 3. Одной рукой держите марки так, чтобы большой палец находился на марке 1, а указательный на марке 2. Второй рукой держите другой конец блока марок, в котором марка 8 повернута лицевой стороной, а марка 4 оборотной. Теперь самое трудное: нужно протиснуть конец блока 8/4 между марками 1 и 5, а затем повернуть его вокруг так, чтобы конец блока 8/4 прошел между марками 6 и 2, оставив только марки 3 и 7 между марками 1 и 5. Задача решена!
Четыре марки можно оторвать от блока следующими способами:
Вы должны внимательно подсчитывать количество фигур, учитывая при этом все возможные варианты ориентации и вращения.
Фигуру A можно составить шестью
способами.Фигуру B можно построить четырьмя способами так, как показано выше, и тремя способами при повороте на угол 90 градусов. Если повернуть ее на 180 градусов вокруг вертикальной оси так, чтобы фигура вроде буквы Z превратилась в фигуру наподобие буквы S, то получим еще четыре способа. Кроме того, еще три способа можно получить, повернув на 90 градусов фигуру, напоминающую букву S. Всего – 14
способов.Фигуру C можно составить четырьмя способами так, как показано выше, тремя способами в случае поворота на 90 градусов, четырьмя способами при повороте на 180 градусов и еще тремя способами при повороте на 270 градусов, что дает в сумме 14 способов. Повернув фигуру C на 180 градусов вокруг вертикальной оси так же, как и фигуру B, получим еще 14 способов. Всего выходит 28
способов.Фигуру D можно составить четырьмя способами так, как показано выше, тремя способами в случае поворота на 90 градусов, четырьмя способами при повороте на 180 градусов и еще тремя способами при повороте на 270 градусов, что дает в сумме 14
способов.Фигуру E можно получить только тремя способами.
Итак, общее количетво 6 + 14 + 28 + 14 + 3 = 65
способов.Согнув лист бумаги после четвертого и шестого квадратов, вы без труда получите куб.
Эта головоломка решается по-разному. Самый быстрый способ подразумевает скручивание и пропускание полос через самих себя – подобно тому, как скауты делают зажимы. Однако я не буду показывать здесь этот способ, поскольку вы, скорее всего, догадались, как это делается. Если вам интересно, поищите решение в интернете.
В этой головоломке мне по-настоящему нравится то, что косу можно сплести, если руководствоваться общими принципами. Самый легкий способ решения настолько прост, что после того как вы его найдете, задача тут же перестанет быть головоломкой. Для этого достаточно следовать инструкциям.
Надо полагать, все умеют заплетать косу. Нужно провести левую прядь над центральной, затем правую над центральной, затем снова левую и т. д. На рисунке полоса 1 накрывает полосу 2, затем полоса 3 накладывается на полосу 1, которая теперь находится в центре. Далее полоса 2 (слева) накладывается на полосу 3 (в центре) и т. д.
Я уже говорил, что пряди в косе переплетаются шесть раз. Это подсказка. Давайте забудем на минуту, что три полосы соединены у верхних и нижних концов. Начните заплетать косу сверху. Наложите полосу 1 на полосу 2, затем полосу 3 на полосу 1 и сделайте еще четыре переплетения, пока не получите все шесть. (Это достаточно кропотливая работа, поэтому я рекомендую использовать пластиковую полосу, так как бумага может порваться.) Зажав шестое переплетение большим и указательным пальцами, вы получите нечто напоминающее причудливо скрученный узел, как показано на рисунке ниже.
Этот узел получился в результате того, что при каждом переплетении полос в верхней части в нижней происходило их безобразное скручивание. После шести переплетений то, что получилось слева от большого пальца, представляет собой схему нашего решения, а то, что справа, – просто ком пластика.
Что же делать дальше? Попытайтесь распутать свободной рукой тот бесформенный ком, который образовался с правой стороны. Если пропустить правый конец несколько раз через себя, полосы полностью распутаются. Поправьте косу так, чтобы «пряди» были сплетены равномерно. В конечном счете невозможная коса все же возможна.
Хотя это решение не очень изящное, но оно работает. Порой решение задачи сводится к выполнению самого простого действия. В задаче сказано сплести косу – так делайте это!
1. б) 1.
Все эти утверждения противоречат друг другу, а значит, истинным может быть не более чем одно из них. А если одно из утверждений истинно, то оно должно быть вторым, поскольку это действительно так.
2. а) равносторонний треугольник.