Предположим, вам говорят, что среди десяти монет
Предположим, в группе А нет орлов. Стало быть, все
Теперь давайте проанализируем случай, когда в группе А некоторые монеты – орлы, а некоторые – решки. Если в группе А
Этот фокус работает для любого количества монет, а не только для десяти. Если вам известно общее количество орлов, вы можете разделить монеты на две группы, которые содержат одинаковое количество орлов, выбрав количество монет, равное количеству орлов, и перевернув их.
Решение этой головоломки основано на том, что сотня монет обозначается четным числом.
Пронумеруйте монеты от 1 до 100. Если первый ход делает Пенни, она может собрать либо все нечетные, либо все четные монеты. Например, если Пенни нужны все нечетные монеты, она начнет с монеты 1. Боб выберет либо монету 2, либо монету 100, но какую бы монету он ни взял, нечетный номер достанется Пенни. Когда она возьмет эту монету, Боб сможет выбирать только между четными монетами с двух концов ряда, а значит, ему снова придется взять четную. Разделение, при котором Пенни берет только нечетные монеты, а Боб – только четные, продолжится до тех пор, пока на столе не останется монет.
Аналогично, если Пенни нужны четные монеты, она возьмет первой монету 100. Боб выберет либо 1, либо 99, оставив четную монету для Пенни, и т. д.
Таким образом, стратегия Пенни заключается в том, чтобы определить общую сумму всех нечетных и всех четных монет, а затем выбрать четные либо нечетные монеты в зависимости от величины их суммы. Если общая сумма нечетных монет отличается от суммы четных, Пенни гарантированно выиграет. Если же общая сумма нечетных монет равна общей сумме четных, Пенни соберет столько же монет, сколько и Боб, какие бы монеты она ни выбрала.
Невероятный и на первый взгляд парадоксальный результат этой игры состоит в том, что если добавить в ряд еще одну монету, то есть всего 101, то, по всей вероятности, преимущество перейдет к Бобу, хотя он соберет меньше монет! Как только Пенни выберет первую монету, в ряду останется 100 монет, и Боб будет делать то же, что раньше делала Пенни: подсчитает общую сумму всех нечетных монет и общую сумму всех четных монет, а затем выберет чет или нечет в зависимости от того, какая общая сумма больше. Боб может проиграть только в случае, если разность между общей суммой нечетных и четных монет меньше номинала первой монеты, выбранной Пенни.
Именно четность или нечетность ряда монет, а не их номинал или общее количество в ряду играет решающую роль в победе. Поразительный факт!
С помощью второй спички зажгите ту спичку, которая находится между стаканами, и сразу же потушите ее. Спичка прилипнет к правому стакану, а вы сможете поднять левый стакан и достать монету.
Для того чтобы расположить марки в последовательности 1, 5, 6, 4, 8, 7, 3, 2, выполните следующие действия.
Шаг 1. Сложите марки так, чтобы оборотная сторона марки 6 соприкасалась с оборотной стороной марки 7. Держите марки 6 и 7 вместе, зажав их с лицевой стороны указательным и большим пальцами.
Шаг 2. Другой рукой положите марку 4 лицевой стороной на лицевую сторону марки 8. Держите марки 4 и 8 вместе указательным и большим пальцами.
Шаг 3. Наклоните марки 4 и 8 и задвиньте их между марками 6 и 7. Теперь марки 6, 4, 8 и 7 расположены в нужной последовательности.
Шаг 4. Выпрямите полоску марок 1, 2, 5 и 6. Положите марку 5 лицевой стороной на лицевую сторону марки 6 – и задача решена.
Дьюдени писал: «Добиться того, чтобы марки расположились в последовательности 1, 3, 7, 5, 6, 8, 4, 2, труднее, и она вполне могла быть упущена, если бы не убеждение в том, что в силу [открытого мной] закона это возможно сделать».
Шаг 1. Сложите блок марок пополам по центральной горизонтальной линии таким образом, чтобы лицевые стороны марок 1, 2, 3 и 4 были видны спереди, а марок 5, 6, 7 и 8 – с обратной стороны.
Шаг 2. Положите марку 5 лицевой стороной на лицевую сторону марки 6.