Теперь перейдем к железным сплавам
, они заметно менее коррозионностойки в сравнении с медными сплавами. При почвенной коррозии железных сплавов под действием кислорода и влаги образуются оксиды и гидроксиды железа Fe2O3·nH2O желтовато-коричневого цвета, синеватый фосфат железа Fe3(PO4)2·8H2O, желтовато-серый карбонат FeCO3.Для предмета, находящегося в почве, сохраняется определенное равновесие между металлом и окружающей средой, но при извлечении его из археологического слоя это равновесие нарушается: меняется влажность и облегчается доступ кислорода, в результате увеличивается скорость коррозии. Ионы хлора, попавшие в объект из почвенной влаги, реагируя с металлом, образуют хлориды железа, которые, в свою очередь, при гидролизе выделяют хлороводород HCl, который взаимодействует с металлической поверхностью. Место коррозии все время перемещается, затрагивая новые участки сохранившегося металла, что приводит к активному разрушению предмета. Таким образом, реставрацию извлеченного предмета нельзя отложить на неопределенное время, необходимо как можно раньше приступить к обработке.
Не только восстановить, но и уберечь
Состав металла в археологических предметах в настоящее время подробно изучен с помощью микроскопического исследования участков протравленной поверхности, а также с использованием современных спектральных методов, которые позволяют провести анализ без взятия пробы. Эти сведения помогают провести более точную датировку таких предметов, кроме того, по содержанию примесных металлов можно определить состав использовавшихся в то время рудных месторождений. Широко известный радиоуглеродный метод, используемый для датировки остатков органического происхождения, в этом случае малоприменим, так как он «работает» только при наличии атомов углерода, и иногда он может быть полезен при определении возраста органических наслоений.
Если вопросы, касающиеся состава археологических предметов, в настоящее время успешно решают с помощью современных физических методов, то во всем, что относится к процедуре их восстановления после коррозии, протекавшей в течение столетий, еще существует много проблем.
Наука реставрации накопила громадное количество разнообразных приемов, позволяющих вернуть корродированным предметам вид, близкий к первоначальному. В большинстве случаев используют реагенты, широко применяемые для очистки и консервации металлов. Отдельные оригинальные методики удалось создать некоторым талантливым реставраторам, сочетавшим знание химии с искусством экспериментатора. Тем не менее многие из разработанных приемов хотя и позволяют на какое-то время достичь нужного результата, но сохраняют этот эффект ненадолго.
Первый этап работы с археологическим предметом – очистка от загрязнений, представляющих собой жировые наслоения, смешанные с частицами органических веществ и остатками почвы. Далее следует химическая очистка от продуктов коррозии.
А теперь рассмотрим некоторые устоявшиеся методики. Для очистки медных изделий
испробовали много различных реагентов: щелочной раствор сегнетовой соли NaKC4H4O6•4H2O (рис. 8.26), фосфат натрия (он входит в состав бытового средства калгон для смягчения воды), сульфамидную кислоту HOS(O)2NH2. Все эти средства не удаляют красно-коричневый куприт Cu2O. Широко используют препарат трилон Б – динатриевую соль этилендиаминтетрауксусной кислоты, при этом ион металла «укрывается» во внутренней полости молекулы, а металлическая поверхность не затрагивается (рис. 8.27).Этот реагент растворяет практически все нерастворимые в воде продукты коррозии – оксиды, гидроксиды и карбонаты. Однако он заметно ослабляет сам металл, это так называемое «растравливание».
При электрохимических методах очистки существует опасность того, что поверхность покроется тонким слоем свежевосстановленной меди, имеющим яркую красноватую окраску. В результате старинный предмет приобретет вид недавно изготовленной поделки.
Пожалуй, самое важное, что все найденные методики не решали проблему стабилизации – сохранения на долгое время результатов реставрации.
При реставрации бронзовых предметов
основная проблема та же: чтобы сохранить полученные результаты, необходимо удалить следы хлорида меди CuCl2, приводящие к появлению «бронзовой болезни». Часто используют длительную многократную промывку водой (иногда в течение нескольких месяцев) для извлечения ионов хлора Cl– из пор, трещин и полостей.При обработке водным раствором сесквикарбоната натрия (смесь кислого и среднего карбоната натрия NaHCO3
+ Na2CO3) галогениды переходят в труднорастворимые карбонаты, которые «запечатывают» хлориды меди в порах и трещинах, предохраняя их от контакта с влагой. Процесс длится несколько месяцев (при этом необходима ежедневная замена реагента), кроме того, диффузия (проникновение) новых порций реагента в мелкие полости заметно затруднена.