Вначале химики собрали цикл из чередующихся бензольных колец и этиленовых мостиков. Такое вполне возможно, поскольку атомы Н в этилене расположены не на линии двойной связи, а «отогнуты» от нее (рис. 2.6).
Этиленовый фрагмент между двумя молекулами бензола создали с помощью известной реакции: две альдегидные группы – НС=О при взаимодействии с металлическим магнием и хлоридом титана отдают атомы кислорода, при этом образуется двойная связь, т. е. фрагмент этилена, а хлорид титана превращается в TiO2
, унося с собой два атома кислорода (рис. 2.7).С помощью этой реакции четыре молекулы бензола, содержащие по две альдегидные группы, замкнулись в цикл (рис. 2.8).
Напомним, что такой цикл легко образуется, потому что связи в этиленовых фрагментах отогнуты в сторону от линии С=С.
Оставалось самое интересное – превратить этиленовые мостики в ацетиленовые, что и проделали в два этапа. Вначале двойную связь бромировали, а затем от полученного продукта отщепляли HBr с помощью
Таким образом смогли замкнуть жесткие фрагменты (бензол и ацетилен) в кольцо. Удалось также получить подобное кольцо из шести молекул бензола и шести молекул ацетилена. Оказалось, что полученные соединения имеют форму кольцевых лент, в которых бензольные и ацетиленовые фрагменты расположены на мнимой цилиндрической поверхности, т. е. представляют собой некое подобие замкнутой в кольцо ленты (рис. 2.10).
Этой работой химики не только продемонстрировали возможности современного органического синтеза, но и сумели показать, что такие циклы обладают интересными свойствами. Оказалось, что лента из шести бензол-ацетиленовых звеньев способна образовывать устойчивый комплекс с популярной молекулой – фуллереном С60
(многогранник, собранный из 60 атомов углерода), который удобно размещается во внутренней полости кольца (рис. 2.11).Если часть бензольных циклов в ленте заменить нафталиновыми, то полученная лента хорошо удерживает более крупный фуллерен С70
(рис. 2.12).Итак, получились комплексы совершенно нового типа, которые к тому же позволяют разделить фуллерены разного размера.
Фантазия химиков на этом не иссякла, и они решили собрать ленту без ацетилена – только из молекул бензола, что на первый взгляд казалось недостижимым. Стратегия была та же: сначала сделать кольцо из того, что можно согнуть, а затем превратить полученное соединение в то, что нужно.
Исходным соединением стал дифенил (содержит два бензольных цикла), у которого два заместителя – Sn(CH3
)3. Из этого соединения получили цикл, содержащий восемь бензольных ядер и четыре атома платины. Соединение обработали бромом Br2, который «забрал» атомы платины Pt, в результате образовалась лента из одних бензольных циклов (рис. 2.13).При кристаллизации такого соединения ленты укладываются в цилиндры, которые затем упаковываются в параллельно расположенные трубы (рис. 2.14).
Обычные углеродные нанотрубки получают высокотемпературным испарением графита, они содержат только атомы углерода, а в полученных трубчатых конструкциях есть фрагменты С – Н, т. е. это не углеродные, а углеводородные трубки. Фактически это совершенно новая форма нанотрубок, полученных с помощью органического синтеза. В таких соединениях можно менять состав исходных ленточных заготовок и тем самым направленно изменять свойства всей трубчатой конструкции.
Расплющить углеродную пирамидку
Если атом углерода имеет четыре заместителя, то его химические связи направлены к вершинам мысленного тетраэдра (четырехгранная пирамида), причем сам он находится в центре этой пирамиды. Все углы Н – С – Н одинаковы – 109°28’. На рисунке 2.15 изображены молекулы метана CH4
и этана С2Н6, ребра тетраэдров показаны пунктирными линиями. Это именно то, что называют тетраэдрическим углеродом.Заместители у атома углерода могут быть различными, не только Н, но и, например, галогены или другие группы, тетраэдрическая конструкция при этом сохраняется. С того момента, когда первый лауреат Нобелевской премии по химии за 1901 г. Я. Вант-Гофф (рис. 2.16) предложил конструкцию тетраэдра, где четырехзамещенный углерод находится в центре мысленной пирамиды, этот факт оставался непреложной истиной. Исследования второй половины ХХ в. показали, что небольшие отклонения от тетраэдра можно наблюдать в тех случаях, когда атом углерода входит в состав напряженных трех- или четырехчленных циклов. Постепенно химиков стала привлекать идея – расплющить такой тетраэдр и получить соединение, у которого все четыре связи атома С лежат в одной плоскости. Современная химия достигла такого уровня, когда исследователи не только изучают закономерности природы, но и пытаются их преодолеть, иными словами, стараются научиться «управлять» веществом.
Вставим атом в оконный переплет