Читаем Кентерберийские головоломки полностью

Поскольку каждый раз оказывается свободной лишь одна камера, нужно просто выписать подряд номера тех заключенных, которые в нее переходят. Ясно, что лишь малое число узников не будет участвовать в передвижениях, но я предоставляю читателю самостоятельно определить, чему оно равно, так как это очень важный момент в данной головоломке.


171. Головоломка с конурами. У одного человека было 25 собачьих конур, связанных между собой проходами, как показано на рисунке.



Он хотел разместить в них 20 собак, чтобы они образовали непрерывный путь коня от 1-го до 20-го номера, причем 5 нижних конур должны были, как и ранее, остаться пустыми. Это следовало сделать путем перемещения в свободную конуру за один раз одной собаки. Собаки были хорошо вышколены, так что можно было не сомневаться, что каждая останется в той конуре, куда ее посадят, но следует помнить, что, если в одну конуру попадут две собаки, между ними возникнет смертельная схватка. Как можно решить головоломку за наименьшее число перемещений, избежав того, чтобы две собаки в какой-то момент оказались в одной конуре?


172. Две пешки. Вот небольшая приятная головоломка на комбинаторику. Сколькими различными способами две данные пешки (см. рисунок) можно продвинуть на восьмую клетку?



Вы можете передвигать их в любом порядке, образуя при этом различные последовательности ходов. Так, вы можете пойти первой пешкой на аЗ или а4, а потом второй на h3, либо передвигать первую пешку, сколько хотите, не касаясь второй. Любая последовательность ходов допустима, но только в данной головоломке пешка, достигнув восьмой клетки, погибает, а не превращается в другую шахматную фигуру, как в обычной игре. Можете ли вы подсчитать число различных последовательностей? На первый взгляд это выглядит весьма трудным, но я покажу, что при правильном подходе все гораздо проще.

Смешанные задачи

173. Расстановка шахматных фигур. У меня есть единственная шахматная доска и единственный набор шахматных фигур. Сколькими различными способами можно правильно расставить фигуры перед началом игры?[25] Я обнаружил, что в большинстве своем при подсчете все делают ошибку в одном и том же месте.


174. Подсчет прямоугольников. Можете ли вы сказать, сколько квадратов и других прямоугольников содержит шахматная доска? Другими словами, сколькими способами можно обозначить квадрат или другой прямоугольник с помощью линий, отделяющих клетки друг от друга?


175. Мат ладьей. Белые ладьи не могут выйти за пределы малого квадрата, в который они заключены, за исключением последнего хода, когда они делают шах и мат.



Головоломка состоит в том, чтобы выяснить, как можно сделать мат черным за наименьшее число ходов ладьей 5, причем остальные ладьи должны располагаться вдоль сторон малого квадрата в правильном числовом порядке с разрывом между 1 и 7.


176. Пат. Несколько лет назад была предложена головоломка, где требовалось построить воображаемую шахматную игру, в которой белым ставился бы пат за наименьшее возможное число ходов при наличии всех 32 фигур. Сможете ли вы добиться такой позиции менее чем за 20 ходов?


177. Охота за королем. Постройте позицию, указанную на рисунке.



Теперь белые должны сделать мат в 6 ходов. Несмотря на сложности, я покажу, как игру можно сконцентрировать на небольшом числе линий, а здесь отмечу лишь, что первые два хода белых менять нельзя.


178. Крестоносец. Вот призовая головоломка, которую я предложил несколько лет назад. Придумайте шахматную партию, где после 16 ходов все 16 фигур белых оказываются на своих исходных позициях, а у черных остается лишь король (не обязательно в исходной позиции). После этого белые обязаны сделать мат в три хода.


179. Неподвижные пешки. Какое наименьшее число ходов потребуется для того, чтобы, начиная со стандартного исходного расположения фигур, прийти к позиции, изображенной на рисунке?



Разумеется, обе стороны должны ходить в строгом соответствии с правилами игры, хотя в результате получится весьма странная шахматная позиция.


180. Тридцать шесть матов. Расположите 8 оставшихся белых фигур (см. рисунок) так, чтобы белые смогли в один ход сделать любой из 36 возможных матов.



Каждый ход, дающий мат и приводящий к новому расположению, считается новым матом. Фигуры, изображенные на рисунке, трогать нельзя.


Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное