Читаем Кентерберийские головоломки полностью

181. Поразительная дилемма. Мистер Блэк[26] и мистер Уайт[27] сели за шахматы. Мистер Блэк попал в затруднительное положение, и, как это часто бывает, оказалось, что ему надо спешить на поезд. Он предложил Уайту закончить игру в его отсутствие, но при условии, что он не будет делать ходов за Блэка, а станет ходить только своими белыми фигурами. Мистер Уайт согласился, однако, к своему смущению, обнаружил, что при таких условиях совершенно невозможно выиграть. Как он ни старался, ему не удалось поставить мат своему противнику. На какой клетке оставил мистер Блэк своего короля? Другие фигуры на рисунке изображены в своих истинных позициях.



Уайт может ставить шах Блэку сколько угодно раз, ибо это не играет роли, так как он все равно не сумеет добиться матовой позиции.[28]


182. Шах и мат! Забредя в одну из комнат некоего лондонского клуба, я обратил внимание на позицию, оставленную на доске двумя ушедшими игроками.



Эта позиция показана на рисунке. Очевидно, что белые поставили черным мат. Но как им удалось это сделать? Вот в чем головоломка.


183. Странные шахматы. Можете ли вы расположить на доске 2 белые ладьи и белого коня так, чтобы черный король (который должен находиться на одной из четырех центральных клеток) оказался под шахом и ему некуда было ходить? «Другими словами, – скажет читатель, – черному королю будет поставлен мат». Хорошо, если хотите, пользуйтесь этим термином, хотя я сознательно не употребил его сам. Достаточным основанием для этого служит, например, то обстоятельство, что на доске отсутствует белый король.


184. Древняя китайская головоломка. Считается, что головоломка, которую я вам сейчас представляю, родилась в Китае много сотен лет назад и интерес к ней никогда не ослабевал.


В ситуации, показанной на рисунке, белые ходят и ставят мат, сделав каждой из трех фигур ровно по одному ходу.


185. Шесть пешек. Сколькими различными способами я могу расположить 6 пешек на шахматной доске так, чтобы на каждой горизонтали и вертикали оказалось четное число незанятых клеток? Мы здесь вовсе не рассматриваем диагонали, а также не исключаем отражения и повороты; каждые 6 различных клеток дают новое решение.


186. Солитер с шашками. Вот небольшая игра – солитер.[29] Она довольно проста, но не настолько, чтобы сделаться неинтересной. Вы можете либо нарисовать клетки на листе бумаги или картона, либо воспользоваться частью шахматной доски. На рисунке я снабдил шашки номерами, дабы облегчить решение, но вы можете пользоваться шахматными пешками или обычными шашками без номеров.



Головоломка состоит в том, чтобы удалить все шашки, кроме 1. Вы перепрыгиваете какой-нибудь шашкой через другую на расположенную за ней свободную клетку, но не разрешается прыгать по диагонали. Следующие ходы сделают все совершенно ясным: 1–9, 2 – 10, 1–2 и т. д. Здесь 1 перепрыгивает через 9, и вы удаляете 9 прочь с доски; затем 2 перепрыгивает через 10, и вы удаляете 10; далее 1 прыгает через 2, и вы удаляете 2. Таким образом, при каждом ходе вы убираете по одной шашке, пока на доске не останется лишь шашка под номером 1.


187. Солитер на шахматной доске. Вот дальнейшее развитие предыдущей головоломки. Вам нужна только шахматная доска да 32 фигуры или такое же число шашек или фишек. На рисунке изображены перенумерованные шашки. Головоломка состоит в том, чтобы удалить все шашки, за исключением двух, и эти две должны первоначально находиться на одной стороне доски, то есть обязаны обе принадлежать либо к группе с номера 1 по 16, либо к группе с номера 17 по 32. Как и в предыдущей головоломке, одна шашка перепрыгивает через другую на расположенную непосредственно за ней свободную клетку, но не разрешается прыгать по диагонали. Следующий набор ходов пояснит правила игры: 3 – 11, 4 – 12, 3–4, 13 – 3. Здесь 3 перепрыгивает через


11, и вы удаляете 11; 4 перепрыгивает через 12, и вы удаляете 12 и т. д. Эта маленькая игра окажется занимательной, но она требует терпения, а для ее решения потребуется проявить изобретательность.


188. Нелепость. Однажды в рождественский вечер я ехал на поезде в небольшое местечко, расположенное в одном из южных графств. Купе было переполнено, и пассажиры сидели, тесно прижавшись друг к другу. Мой сосед в углу пристально изучал позицию на одной из тех миниатюрных шахматных досок, которые умещаются в кармане. Я не смог удержаться от того, чтобы тоже не посмотреть на нее. Эта позиция показана здесь на рисунке.

Внезапно повернув голову, спутник поймал мой озадаченный взгляд.

– Вы играете в шахматы? – спросил он.

– Да, немного. А что это? Задача?

– Задача? Нет, игра.

– Невозможно! – воскликнул я довольно невежливо. – Эта позиция – сущая нелепость!

Он вынул из кармана почтовую открытку и протянул ее мне. На одной стороне открытки был написан адрес, а на другой – «Kpf2 – g1».



Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное