Некоторые ученые забавлялись подобными программами какое-то время, а потом оставляли их, другие же входили во вкус, и им ничего не оставалось, кроме как измениться самим. Фокс относился к числу тех, кто знал о пределах стандартной, линейной науки. Он сознавал, что по привычке отодвигает в сторону сложные нелинейные детали. Так в конце концов поступали все физики, говоря себе в оправдание: «Для этого придется лезть в справочник специальных функций, а это последнее, чего мне хочется. И еще меньше мне хочется программировать эту задачу на компьютере. Ученый моего уровня не должен заниматься такой рутиной».
«Общая картина нелинейности медленно, но верно привлекала внимание множества людей, – вспоминал Фокс. – Все увидевшие ее извлекали из этого пользу. Вы рассматриваете ту же проблему, что изучали раньше, неважно, в рамках какой дисциплины вы работаете. Прежде, дойдя до определенной черты, вы были вынуждены остановиться, поскольку проблема становилась нелинейной. Сейчас, узнав, под каким углом ее рассматривать, вы возвращаетесь назад».
Форд говорил: «Если та или иная область начинает развиваться, многие понимают: этой области есть что предложить им; если они пересмотрят свой подход к исследованиям, вознаграждение может оказаться немалым. Для меня хаос подобен мечте. Он дает шанс. Если рискнешь сыграть в эту игру, можешь обнаружить золотую жилу».
И все же ученые не могли определиться с понятием «хаос».
Филип Холмс, седобородый математик и поэт из Корнелла, куда он попал через Оксфорд, считал, что это сложные апериодические притягивающие орбиты некоторых (как правило, маломерных) динамических систем.
Хао Байлинь, китайский физик, собравший много основополагающих работ о хаосе в один справочник, говорил, что это тип порядка, которому несвойственна периодичность, быстро развивающаяся область исследований, в которую внесли важный вклад математики, физики, специалисты по гидродинамике, экологи и многие другие, и недавно признанный и повсеместно встречающийся класс естественных явлений.
Брюс Стюарт, ученый из Брукхейвенской национальной лаборатории на Лонг-Айленде, посвятивший себя прикладной математике, был уверен, что это явно беспорядочное, повторяющееся поведение в простой детерминистской системе, похожей на работающие часы.
Родерик Дженсен из Йельского университета, физик-теоретик, изучающий возможность квантового хаоса, думал, что это иррегулярное и непредсказуемое поведение детерминистских нелинейных динамических систем.
Джеймс Крачфилд из Санта-Круза полагал, что это динамика с положительной, но ограниченной метрической энтропией, что в переводе с языка математики звучит следующим образом: поведение, которое порождает информацию (усиливает малые неопределенности), но не является полностью непредсказуемым.
А Форд, объявивший себя проповедником хаоса, говорил, что это динамика, сбросившая наконец оковы порядка и предсказуемости, системы, каждую динамическую возможность которых теперь можно свободно рассматривать, и будоражащее разнообразие, богатство выбора, изобилие шансов[396]
.Джон Хаббард, изучая итерированные функции и дикую бесконечную фрактальность множества Мандельброта, счел «хаос» слишком бесцветным названием для результатов своей работы, поскольку этот термин подразумевает наличие случайности. Хаббард же видел главное в том, что простые процессы в природе могли порождать величественные конструкции огромной сложности без всякой случайности[397]
. Все инструменты, необходимые для кодировки, а затем и раскрытия богатейших, как человеческий мозг, структур, заключались в нелинейности и обратной связи.Другим специалистам, вроде Артура Уинфри, в чьи научные интересы входила глобальная топология биологических систем, название «хаос» казалось слишком узким[398]
. Оно включало в себя простые системы: одномерные структуры Фейгенбаума и двумерные, трехмерные и дробномерные странные аттракторы Рюэля. С точки зрения Уинфри, хаос низкой размерности представлял собой особый случай. Сам ученый интересовался законами многомерной сложности, будучи убежденным, что они существуют. Слишком многие явления Вселенной, казалось, находятся вне досягаемости низкоразмерного хаоса.