Читаем Хаос. Создание новой науки полностью

Освоившись с новым способом исследования форм при помощи компьютера, Хаббард рискнул применить для рассмотрения динамических систем методы комплексного анализа, чего раньше не делали. Он чувствовал, что некая внутренняя связь объединяет различные разделы математики. Хаббард также знал, что будет недостаточно лишь увидеть множество Мандельбро. Он хотел добиться полной ясности. В конце концов он заявил, что это ему удалось.

Если бы граница была просто фрактальной — в духе причудливых картин Мандельбро, тогда каждое последующее изображение более или менее походило бы на предыдущее. Принцип внутреннего подобия при различных масштабах позволил бы предугадать, что мы увидим в электронный микроскоп на следующем уровне увеличения. Вместо этого каждый взгляд в глубины системы Мандельбро приносил все новые сюрпризы. Мандельбро, желая применить свой термин «фрактал» к новому объекту, начал беспокоиться о том, что определил это понятие слишком узко. При достаточном увеличении выяснилось, что система приблизительно повторяет свои же элементы — крошечные, похожие на жучков объекты, отделявшиеся от основной формы. Однако, еще более увеличив изображение, исследователь убеждался, что эти молекулы не во всем соответствуют друг другу, — всегда появлялись новые формы, похожие на морских коньков или на вьющиеся ветви оранжерейных растений. Фактически ни один фрагмент системы точно не походил на другой при любом увеличении.

Обнаружение «плавающих» молекул сразу же повлекло за собой дополнительные трудности. Являлось ли множество Мандельбро связанным, похожим на континент с выдававшимися вперед полуостровами? Или оно походило на рассеянное скопление, где основной объект окружали мелкие островки? Ответ на этот вопрос выглядел далеко не очевидным. Знания о множествах Джулиа мало что давали, поскольку их графические образы носили двоякий характер: одни представляли собой целые формы, другие смахивали на скопление пылинок. Эти мельчайшие частицы, будучи фрактальными, обладали особым свойством: они не составляли единого целого: каждая отделена от другой зоной пустого пространства. В то же время ни одна «пылинка» не выглядит обособленной; заметив одну, можно всегда найти и расположенную произвольно близко группу частиц. Мандельбро, разглядывая свои картины, постепенно понимал, что с помощью компьютерного эксперимента ему не удается ответить на основной вопрос. Его внимание сосредоточилось на частичках, «парящих» вокруг основной формы. Некоторые из них пропадали, другие, удивительно похожие, наоборот, появлялись. Они, казалось, не зависели друг от друга, но, возможно, были связаны между собой линиями, столь тонкими, что решетка уже найденных точек никак не могла уловить их.

Доуди и Хаббард блестяще использовали свою новую математику, чтобы доказать, что каждая плавающая молекула на самом деле «висит» на филигранной нити, которая связывает ее с другими молекулами. В итоге получается хрупкая паутинка, ведущая от крошечных частиц к основному объекту, — «дьявольский полимер», говоря словами Мандельбро. Математики доказали, что в каждом сегменте — не имеет значения, где он находится и насколько он мал, — при увеличении «компьютерным микроскопом» обнаружатся новые молекулы, каждая из которых будет напоминать систему в целом и одновременно чем-то отличаться от нее. Каждая новая молекула будет обладать собственными спиралями и выступающими частями, похожими на языки пламени, и в них также неизбежно обнаружатся новые молекулы, еще меньшие, такие же бесконечно разнообразные, всегда подобные, но никогда — полностью идентичные. Это можно назвать чудом миниатюризации: каждая новая деталь является вселенной, цельной и многоликой.


Перейти на страницу:

Похожие книги