Читаем Хаос. Создание новой науки полностью

У Пайтгена не было того предубеждения, с которым большинство математиков относились к компьютерным экспериментам. Само собой разумелось, что стандартные методы доказательств в конечном счете должны привести к точному результату, иначе это будет не математика. Графический образ на экране обретал законное право на существование, будучи истолкован на языке теорем и доказательств. И все-таки генерирование такого изображения уже само по себе изменяло эволюцию дисциплины. Как полагал Пайтген, компьютерные исследования позволили ученым избрать более естественную стезю развития науки. Математик вправе на время абстрагироваться от требования точности доказательства и, подобно физику, следовать туда, куда приведут его эксперименты. Огромная производительность компьютерных вычислений и визуальные ключи к интуитивным ощущениям избавляют ученых от блуждания в потемках. Открыв неизвестные тропы и оконтурив новые объекты, математик может вернуться к традиционному доказательству. «Сила математики в точности, — отметил Пайтген. — Она дает нам возможность продолжать ту линию мысли, в которой мы абсолютно уверены. На том стояли и будут стоять математики. Но почему бы не обратить внимания на феномены, которые сейчас могут быть поняты лишь отчасти? Более точное знание о них, возможно, добудут грядущие поколения. Бесспорно, точность важна, но не до такой степени, чтобы отказаться от изучения того, что нельзя доказать сейчас».

К началу 80-х годов персональные компьютеры уже выполняли расчеты достаточно точно, что позволяло строить красочные изображения системы Мандельбро. Многочисленные любители быстро обнаружили, что разглядывание их при максимальном увеличении дает четкое ощущение увеличивающегося масштаба. Сравнивая систему Мандельбро с планетой, можно сказать, что персональный компьютер способен показать всю ее, или элементы размером с города на планете, или детали, соразмерные со зданиями, отдельными комнатами в них, книгами на полках, письмами в ящиках стола, бактериями в воздухе или даже атомами различных веществ. Люди, рассматривая такие картины, замечали, что при любом масштабе обнаруживались схожие образы и одновременно каждый масштаб обладал своими особенностями. Подобные микроскопические ландшафты генерировались одним набором строчек компьютерного кода(*).


Граница находится там, где программа для системы Мандельбро идет на множество компромиссов, а ее скорость замедляется более всего. На указанном рубеже, когда сто, или тысяча, или десять тысяч итераций не приносят результата, программа все еще не может дать определенного ответа на вопрос, входит ли определенная точка в пределы системы или нет. Кто знает, что принесет миллионная итерация? Поэтому программы, которые строят самые захватывающие изображения системы с наиболее детальным увеличением, выполняются на мощных универсальных вычислительных машинах или компьютерах с параллельной обработкой данных, где тысячи индивидуальных процессоров производят одни и те же вычисления в аналогичном порядке. Граница располагается там, где точки медленнее всего ускользают от притяжения системы, будто балансируя между двумя соревнующимися аттракторами, один из которых располагается в нуле, а другой — на бесконечности.

Когда ученые, закончив с системой Мандельбро, обратились к изображению реальных физических явлений, свойства границы вышли на передний план. Происходящее на рубеже между двумя аттракторами в динамической системе служит своего рода отправной точкой, определяющей ход множества широко известных процессов, начиная от разрушения материалов и заканчивая принятием решений. Каждый аттрактор в такой системе, подобно реке, имеет свой «бассейн», свою «площадь водосбора», и каждый такой «бассейн» заключен в определенные границы. В начале 80-х годов для группы наиболее влиятельных физиков самым многообещающим разделом математики и физики оказалось изучение границ фрактальных бассейнов.

Перейти на страницу:

Похожие книги