Исследователям и инженерам эти изображения преподали хороший урок, послужив одновременно и предостережением, — слишком часто поведение сложных систем прогнозируют исходя из ограниченных данных. Наблюдая за системой, которая функционировала нормально, оставаясь в узких рамках нескольких параметров, инженеры надеялись экстраполировать результат более или менее линейным образом на необычное поведение. Но исследование границы фрактальных бассейнов продемонстрировали, что рубеж между состояниями покоя и возмущения куда сложнее, чем кто-либо мог себе представить. «Вся энергетическая сеть Восточного побережья является колебательной системой, по преимуществу стабильной. Нас интересует, что произойдет, если потревожить ее, — объяснял Йорк. — Необходимо знать, что представляет собой граница. Большинство даже не имеет понятия, как она выглядит».
Границы фрактальных бассейнов адресовали ученых к важнейшим дискуссионным вопросам теоретической физики. В этом смысле фазовые переходы являлись своего рода отправными пунктами. Пайтген с Рихтером рассмотрели одну из наиболее изученных разновидностей — намагничивание и размагничивание материалов. Полученные ими картины границ обнаруживали удивительнейшую сложность, начинавшую казаться вполне естественной. Изображение напоминало головки цветной капусты с причудливым рисунком выпуклостей и борозд. По мере изменения параметров и увеличения деталей очертания становились все более и более неупорядоченными, пока вдруг в глубине зоны возмущения не появилась знакомая, сплющенная у полюсов, форма, усеянная ростками: система Мандельбро, где каждый завиток и каждый атом располагались на своем месте. «Возможно, стоит поверить в магию», — писали ученые, осознав, что перед ними предстало очередное доказательство всеобщности.
Рис. 8.2. Границы фрактальных бассейнов. Даже когда долгосрочное поведение динамической системы не является хаотическим, хаос может появиться на границе двух типов устойчивого поведения. Зачастую динамическая система характеризуется более чем одним состоянием равновесия, как, например, маятник, который может остановиться, притянувшись к одному из двух магнитов, встроенных в его основание. Каждое состояние равновесия является аттрактором. Граница между двумя аттракторами может быть сложной, но спокойной
Майкл Барнсли пошел по иному пути: мысли его обратились к формам, созданным самой природой. Особенно его занимали образы, исходившие от живых организмов. Он экспериментировал с множествами Джулиа, а также с другими процессами, постоянно отыскивая способы генерации еще большей изменчивости. В итоге он обратился к неупорядоченности как к основе неизвестных ранее методов моделирования естественных форм. Рассуждая о новой технике в статьях, ученый именовал ее «глобальным построением фракталов посредством систем итерированных функций», а в разговоре отзывался о своем изобретении как об «игре хаоса».
Чтобы сыграть в такую игру, необходим компьютер с графическим пакетом программ и генератором случайных чисел, но в принципе будет достаточно листа бумаги и монетки. Выбираем на листе начальную точку — неважно, где именно. Придумываем два правила — для орла и для решки. Правила указывают, каким образом откладывать новые точки, например: «Переместиться на два дюйма на северо-восток» или «Приблизиться на 25 % к центру». Подбрасывая монетку, начинаем отмечать точки. Используем правило орла, когда выпадает орел, и правило решки, когда выпадает решка. Если мы отбросим первые пятьдесят точек, как сдающий карты прячет первые несколько карт при новой сдаче, то обнаружится, что «игра хаоса» воспроизводит не случайное поле или разбросанные точки, а форму, проявляющуюся все более и более четко по мере продолжения игры.