Закладывая основу грядущей смены парадигм, ученые бились над тем, что принимали за пробел в знаниях о простых системах вроде маятника. К началу XX века диссипативные процессы, к примеру трение, были уже изучены и учитывались в уравнениях. На занятиях студентам рассказывали, что нелинейные системы, как правило, не имеют решения, и это вполне соответствовало истине. Зато утверждение, что эти системы большей частью представляют собой исключения из правил, отнюдь не являлось правдой. Поведение целого класса движущихся объектов: маятников, колеблющихся пружин, струн и гибких стержней — описывается классической механикой. К жидкостным и электрическим системам применили сходный математический аппарат, но почти никто во времена безраздельного господства «классики» не подозревал, что стоит только уделить нелинейным элементам должное внимание — и обнаружится: в динамических системах затаился хаос.
Физик не способен до конца проникнуть в тайны турбулентности, не поняв феномена маятника. До конца осмыслить эти тайны в первой половине XX века было попросту невозможно. По мере того как хаос стал сводить воедино изучение различных систем, динамика маятников расширялась, вбирая в себя поведение даже таких продуктов высоких технологий, как лазеры и сверхпроводники Джозефсона. Ход некоторых химических реакций подобен поведению маятника. Нечто похожее прослеживается и в биении сердца. По словам одного ученого, динамика маятника таит в себе новые возможности для «психологии и психиатрии, экономического прогнозирования и, возможно, даже для социальной эволюции».
Рассмотрим качели на детской площадке. Они набирают ускорение, устремляясь вниз, а по мере взлета вверх их скорость падает; часть энергии постоянно утрачивается из-за трения. Допустим, что качели приводит в движение некий механизм, подобный часовой пружине. Как подсказывает нам интуиция, в какой бы точке ни началось движение, оно станет постоянным. Качели будут раскачиваться взад и вперед, поднимаясь каждый раз на одну и ту же высоту. Такое возможно. Однако, сколь ни удивительно, качели могут колебаться и весьма странным образом: сначала взлетать высоко, затем низко, никогда не повторяя тот рисунок движения, что наблюдался прежде.
Поразительно неустойчивое поведение порождается нелинейностью потока энергии на входе и выходе этого простейшего осциллятора. Амплитуда колебаний уменьшается, затем увеличивается. Уменьшается — потому что трение стремится остановить движение, увеличивается — из-за постоянно возникающих внешних толчков. Но даже тогда, когда замедляющаяся, а затем ускоряющаяся система, казалось бы, находится в равновесии, это лишь видимость. Мир полон таких систем, начиная с атмосферной, которую «заглушает» трение перемещающихся воздушных масс, воды, рассеивание тепла в открытый космос и «приводит в движение» постоянный приток солнечной энергии.
Впрочем, непредсказуемость поведения маятников не была причиной, подвигшей физиков и математиков снова всерьез взяться за их изучение в 60-70-х годах. Непредсказуемость лишь подогрела интерес к проблеме. Исследователи динамики хаоса обнаружили, что неупорядоченное поведение простых систем является процессом
Играли не только они одни. На прилавках сувенирных магазинов появилась забавная безделица, получившая название «космические шары» или «небесная трапеция». Она представляет собой два шарика, закрепленных на противоположных концах стержня, который, в свою очередь, подобно поперечине буквы Т, крепится на свободном конце маятника. Центром тяжести маятника служит третий шар, более массивный, чем первые два. Качание маятника сопровождается свободным вращением верхнего стержня. Внутри у всех трех шариков находятся маленькие магниты. Однажды запустив устройство, вы наблюдаете, как оно работает. В его основание встроен электромагнит с автономным питанием, и всякий раз, как нижний шарик приближается к основанию, игрушка получает легкий магнитный толчок. Временами устройство качается устойчиво и ритмично, но порой его бесконечно изменчивое движение напоминает хаос.