Увязав топологию и динамические системы, ученые получили бы возможность использовать некую форму для наглядного представления всего разнообразия моделей поведения систем. Если система сравнительно проста, эта форма очертаниями может напоминать изогнутую поверхность. Сложные системы обладают множеством измерений. Точка на поверхности описывает состояние системы в определенный момент времени. По мере развития системы во времени точка передвигается через всю поверхность, описывая на ней своеобразную траекторию. Легкий изгиб формы соответствует изменению параметров системы, повышению вязкости жидкости или небольшому увеличению движущей силы маятника. Приблизительно одинаковые формы свидетельствуют о приблизительно одинаковом поведении. Если форма доступна зрительному представлению, систему можно решить.
Когда Смэйл обратился к динамическим системам, топологией, как и вообще математикой, занимались люди, относившиеся с пренебрежением к прикладному применению математических знаний. Физика и топология — дисциплины, родственные по происхождению. Однако математики начисто забыли об этом, изучая очертания фигур ради них самих. Смэйл, будучи до мозга костей математиком, разделял общее заблуждение, полагая, впрочем, что кое-что в топологии может обогатить и физику. Того же мнения держался в начале XX века Пуанкаре.
Так случилось, что первый шаг в новой области Смэйл сделал в неверном направлении. Он предложил закон, гласивший примерно следующее: система может вести себя беспорядочно, но подобное поведение не является
Зима 1959 г. принесла Смэйлу, находившемуся тогда в Рио-де-Жанейро, плохие новости. Вскоре после Рождества в дом, где он обитал с женой и двумя малышами, принесли письмо от коллеги. Высказанная Смэйлом догадка пролила свет на целую группу устойчивых дифференциальных уравнений, но не более того. С точки зрения Смэйла, к любой хаотичной системе можно было приближаться сколь угодно близко, используя выделенный им класс уравнений, но в этом он ошибался. В письме его коллега сообщал, что многие системы вовсе не так понятны, как представлялось Смэйлу. В доказательство автор письма приводил систему, где сосуществовали хаос и устойчивость. И эта система была вполне «крепкой»! Слегка потревожив ее, можно было заметить, как появляются непрогнозируемые черты, а ведь в реальности в любую природную систему вторгается посторонний шум. Устойчивая, но поражающая своей необычностью… Смэйл с недоверием вчитывался в строки письма, однако через некоторое время убедился в правоте коллеги.
Хаос и неустойчивость — понятия, смысл которых еще не отлился в чеканные формулировки, — вовсе не синонимы. Хаотичная система вполне может демонстрировать устойчивость, если определенное ее иррегулярное качество продолжает существовать вопреки незначительным помехам, о чем наглядно свидетельствовала система Лоренца (Смэйл и услышит о ней лишь годы спустя). Открытый Лоренцем хаос при всей своей непредсказуемости являлся столь же устойчивым, как шарик в лунке. Можно добавить шум в эту систему, покачать, хорошенько разболтать ее, помешать движению внутри нее — все равно, когда возмущение уляжется и мимолетные факторы исчезнут, словно замирающее эхо в глубоком каньоне, система вновь вернется к своему прежнему беспорядочному состоянию. Локально она непредсказуема, глобально — устойчива. Реальные же динамические системы вели себя, повинуясь куда более сложному набору правил, чем можно вообразить. Пример, который содержался в адресованном Смэйлу послании, являл собой другую простую систему, открытую более тридцати лет назад, но незаслуженно забытую. Эта система — колеблющаяся электрическая цепь, по сути своей маятник, нелинейный и подвергаемый, подобно качелям, периодическому воздействию силы.