Предел мечтаний физика — дифференциальное уравнение, которое можно записать в простой форме. Ознакомившись со статьей Лоренца, которая ждала своего часа, Йорк увидел, что подобное поймут и физики. Он направил копию Смэйлу, проставив на видном месте свой адрес, чтобы получить статью обратно. Смэйл изумился, обнаружив, что безвестный метеоролог
Йорк же чувствовал, что физиков
Говоря про обучение, нельзя не отметить, что многие преподаватели физики и математики рассказывали и рассказывают о дифференциальных уравнениях, пишут их на доске и объясняют способы решения. Данные уравнения описывают плавное течение событий, действительность в сплошной среде, не расчлененной на отдельные пространственные решетки или временные интервалы. Любой студент знает, что решать дифференциальные уравнения не так-то легко, но за два с половиной столетия ученые накопили большие знания по этой проблеме. Если ответ не найти в справочнике, можно воспользоваться одним из известных методов их решения, или, как сказал бы специалист, «интегрирования». Не будет преувеличением утверждать, что большинством своих достижений современная наука обязана именно этим методам. Мы не погрешим против истины, назвав одним из гениальнейших деяний человечества эту попытку смоделировать окружающий мир. Бывает, что, овладевая этим инструментом познания природы, осваиваясь с теорией и весьма сложной практикой, ученый упускает из виду одну деталь: большинство дифференциальных уравнений неразрешимо.
«Если бы можно было найти решение дифференциального уравнения, — говорил Йорк, — в нем обязательно отсутствовала бы хаотичность, поскольку для решения нам необходимы некие инварианты — постоянные параметры, столь же неизменные, как угловой момент. Обнаружив их в достаточном количестве, можно решить уравнение. Но тем самым мы исключим хаос».
Методы решения, описываемые в справочниках, на самом деле работают. Тем не менее, сталкиваясь с нелинейной системой, ученые вынуждены или заменять ее линейной аппроксимацией, или искать иной нетрадиционный подход. Студенты весьма редко находят в справочниках нелинейные системы, которые допускают использование указанных приемов и не обнаруживают «сильной зависимости от начальных условий». Нелинейные системы, в которых на самом деле таится хаос, редко объясняются и редко изучаются. Их всегда считали отклонениями и старались не принимать во внимание, руководствуясь уже сложившейся практикой. И лишь немногие помнят, что на самом деле отклонением являются поддающиеся решению упорядоченные линейные системы! Таким образом, лишь немногие осознают, насколько природа нелинейна по своей сути. Энрико Ферми однажды воскликнул: «В Библии вовсе не сказано, что все законы природы можно объяснить с помощью линейных построений!» Математик Станислав Улам заметил, что именовать исследование хаоса «нелинейной наукой» все равно что назвать зоологию «изучением всех животных, кроме слонов».