В качестве граничной поверхности выбирают такую поверхность, внутри которой общая вероятность обнаружить электрон достаточно велика (например: 90; 95 или даже 99 %). Но таких поверхностей для каждого облака можно выбрать множество, поэтому среди них выбирают одну – поверхность, на которой в любой точке вероятность нахождения электрона одинакова. Есть и другой способ выбора граничной поверхности. В этом случае среди поверхностей с одинаковой (в любой точке) электронной плотностью выбирают поверхность, на которой электронная плотность крайне незначительна (например, 0,01 или 0,001 е/>A 3, то есть 1,6? 109 или 1,6? 108 Кл/м3). Выбранные этими двумя способами граничные поверхности по внешнему виду мало отличаются друг от друга.
Граничная поверхность электронного облака – поверхность,в любой точке которой вероятность нахождения электрона одинакова,а внутри которой общая вероятность нахождения электрона достаточно велика. |
Построим граничную поверхность 1s-ЭО. На рис. 6.7 вспомогательные линии, относящиеся к этому построению, изображены пунктиром. В результате мы получим две сферы: внешнюю (а) и внутреннюю (б), между которыми вероятность обнаружить электрон равна 90 %. Внутренняя сфера мала, находится вблизи ядра и при образовании атомом химических связей ее присутствие никак не проявляется, поэтому обычно говорят, что 1s-ЭО имеет форму шара.
По-иному устроено 2p-ЭО (рис. 6.8). Оно состоит из двух одинаковых частей, симметричных относительно центра облака. Между ними, на плоскости m (перпендикулярной плоскости чертежа), электрон находиться не может. Граничная поверхность 2p-ЭО (ее сечение обозначено на рисунке буквой а) похожа по форме на две половинки апельсина и представляет собой тело вращения (простейшими телами вращения являются цилиндр, конус, шар и тор (приближенную форму тора имеет бублик) с осью x. Если наш "наблюдатель"полетит через это облако вдоль оси x, то график, который он построит, не будет сильно отличаться от такого же графика для 1s-ЭО, только высота максимумов будет немного меньше. По любому другому направлению (кроме лежащих в плоскости m), например, вдоль прямой f, электронная плотность будет еще меньше, но максимумы кривой останутся на тех же расстояниях от ядра (см. нижний график). Это постоянство максимумов характерно и для других электронных облаков, что позволяет нам выбрать в каждом облаке сферу "с "с радиусом, в конце которого электронная плотность по этому направлению максимальна.
Такой постоянный радиус и характеризует размер электронного облака. Этот радиус называют радиусом электронного облака и обозначают rЭО. В случае рассмотренных нами орбиталей именно на этом расстоянии от ядра вращался бы электрон, если бы он не обладал волновыми свойствами.
Радиус электронного облака – радиус сферы, на которой по любому направлению от ядра электронная плотность этого облака максимальна. |
2p-подуровень образован тремя орбиталями, следовательно, в атоме может быть три 2p-ЭО. А так как электроны взаимно отталкиваются, эти облака располагаются в пространстве так, чтобы максимумы их электронной плотности находились как можно дальше друг от друга. Это возможно только в том случае, если оси облаков будут взаимно перпендикулярны, например, направлены вдоль осей прямоугольной системы координат. Поэтому 2p-ЭО так и обозначают: 2рх-, 2рy- и 2pz-ЭО (рис. 6.9). Если каждое из этих облаков образовано одним или двумя электронами, то суммарное электронное облако всех электронов подуровня за счет сложения электронной плотности будет иметь шарообразную форму (как у 1s-ЭО). Такую же шарообразную форму будут иметь суммарные электронные облака любого подуровня, если, конечно, каждое из отдельных облаков будет образовано одним или двумя электронами.
Форма и строение других электронных облаков сложнее. Так 2s-ЭО, будучи также, как и все s-облака шарообразным, двухслойное (рис. 6.10 а). Внутри внешнего слоя с главным максимумом электронной плотности есть еще один слой со значительно меньшей электронной плотностью.
3p-ЭО состоит из четырех частей (рис. 6.10 б). Две большие области похожи по форме на половинки 2p-ЭО, но ближе к ядру расположены еще две маленькие области с меньшей электронной плотностью. В пространстве оси 3p-электронных облаков, так же, как и оси 2p-ЭО, взаимно перпендикулярны.
С увеличением главного квантового числа n форма электронных облаков (c одинаковым l) все более и более усложняется, но внешние области таких облаков остаются похожими, геометрически почти подобными.