и всё, никакие другие наборы квантовых чисел при n = 2 невозможны. Следовательно, число АО при n = 2 равно четырем.
Рассуждая аналогично, мы можем получить и другие АО. Результат приведен в первых четырех столбцах таблицы 13. Эта таблица может быть продолжена и для других значений главного квантового числа.
Набор атомных орбиталей определяется ограничениями, наложенными на значения квантовых чисел.
Используя квантовые числа, мы можем "назвать "полученные орбитали, то есть приписать каждой из них свой символ. Символ АО состоит из цифры и строчной латинской буквы, например: 2s, 3p, 4f. Цифра соответствует главному квантовому числу, а буква символизирует значение орбитального квантового числа по следующему правилу: l = 0 соответствует буква s, l = 1 соответствует буква p, l = 2 – буква d, l = 3 – буква f и далее по алфавиту. Например:
1s-АО обозначает орбиталь с n = 1 и l = 0;
2p-АО обозначает орбиталь с n = 2 и l = 1;
3d-АО обозначает орбиталь с n = 3 и l = 2.
Символы орбиталей приведены в последней колонке таблицы 13.
Те же символы используются и для обозначения электронов, находящихся на этих орбиталях, то есть, в этих состояниях:
2p-электрон – электрон на 2p-АО,
4f-электрон – электрон на 4f-АО и т. д.
Поведение электрона на орбитали зависит еще от одной его необычной характеристики, называемой спином. Эта специальная (не имеющая аналогов в макромире) характеристика микрочастиц, определяющая их магнитные свойства. Для ее учета используется четвертое квантовое число – спиновое. Оно обозначается буквой s. У разных частиц спиновое квантовое число бывает разным, но для электрона оно может принимать только два значения: s = 1/2 и s = –1/2.
Таким образом, электрон в атоме полностью и однозначно характеризуется четырьмя квантовыми числами (n, l, m и s), три из которых (n, l и m) характеризуют орбиталь этого электрона, а четвертое (s) – его спин
Таблица 13.Наборы значений квантовых чисел для различных АО
n | l | m | Число АО | Обозначение АО |
1 | 0 | 0 | Одна | 1s |
2 | 0 1 | 0 –1, 0, 1 | Одна Три | 2s 2p |
3 | 0 1 2 | 0 –1, 0, 1 –2, –1, 0, 1, 2 | Одна Три Пять | 3s 3р 3d |
4 | 0 1 2 3 | 0 –1, 0, 1 –2, –1, 0, 1, 2 –3, –2, –1, 0, 1, 2, 3 | Одна Три Пять Семь | 4s 4p 4d 4f |
В дальнейшем мы с вами будем использовать обозначения атомных орбиталей, приведенные в последней колонке таблицы 13.
АТОМНАЯ ОРБИТАЛЬ, МОЛЕКУЛЯРНАЯ ОРБИТАЛЬ, КВАНТОВЫЕ ЧИСЛА.
1.Составьте символы атомных орбиталей, для которых а) n = 2, l = 0; б) n = 3, l = 0; в) n = 3, l =
2.Какие значения n и l соответствуют а) 4s-АО, б) 4р-АО, в) 5dАО, a) 6p-АО?
3.Сколько в атоме s-орбиталей, р-орбиталей, d-орбиталей?
4.Сколько в атоме 2р-орбиталей, 3s-орбиталей, 4d-орбиталей, 4f-орбиталей? Докажите, что их именно столько.
5.Сколько орбиталей атома имеют символ 5p, 6s, 4d, 5f? Каким квантовым числом отличаются орбитали с одинаковым символом?
6.Среди приведенных наборов квантовых чисел n, l и m выберите те, которым соответствуют АО. Укажите символы этих АО: а) n = 2, l = 0, m = 0; б) n = 3, l = 3, m = 1; в) n = 2, l = 1, m = 2; г) n = 3, l = 2, m = – 1; д) n = 3, l = 0, m = 2; е) n = 3, l = 1, m = 0.
6.3. Энергия атомных орбиталей. Электронные уровни и подуровни
Узнав, какие орбитали возможны в атоме, постараемся теперь выяснить, какова их энергия, ведь роль энергии во всех процессах, протекающих во Вселенной, очень велика. Это относится и к микромиру, и к Космосу.
Энергия АО – энергия электрона, находящегося на этой орбитали (то есть в этом состоянии). |
Энергия АО (ЕАО) может быть как рассчитана из уравнения Шрёдингера, так и определена экспериментально, что давно уже сделано для атомов практически всех элементов. Но при изучении химии эти точные абсолютные значения используются редко. Обычно бывает достаточно знать, энергия какой орбитали больше, а какой меньше, а также, сильно или слабо различаются по энергии соседние орбитали. Такую информацию дает, например, рис. 6.3, где на оси энергии нанесены значения энергии орбиталей атома менделевия (одного из последних элементов, электронное строение атома которого определено экспериментально), как занятых электронами, так и некоторых свободных. Значения нанесены на ось без строгого соблюдения масштаба, так как при увеличении главного квантового числа разница между значениями энергии АО уменьшается очень сильно, поэтому сделанный в масштабе рисунок был бы ненагляден. Есть и еще одна причина, по которой эту шкалу обычно изображают без соблюдения масштаба: по мере возрастания заряда ядра энергия одних и тех же орбиталей существенно уменьшается, но при этом общая закономерность распределения орбиталей по энергии остается неизменной. Изображенная на рис. 13 шкала точнее отражает одну из уже известных нам особенностей поведения электрона в атоме (сравни с рис. 11).