В России месторождения самородной серы имеются в Самарской области. В промышленности более половины добытой серы расходуется на производство серной кислоты. Используют ее и для производства многих других веществ, а также в резиновой промышленности для вулканизации каучука, в производстве красителей, в фармацевтической промышленности, при изготовлении спичек и средств борьбы с вредителями сельскохозяйственных растений. Тщательно очищенная сера применяется и в медицине при некоторых кожных и желудочно-кишечных заболеваниях. |
2.Какой объем (при н. у.) занимает а) 0,5 моль, б) 0,1 моль, в) 10 моль, г) 0,01 моль любого газа?
3.Определите массу углекислого газа, занимающего при н. у. объем 2,8 л.
4.Определите массы следующих газов (объем газов при н. у. указан в скобках): а) H2 (4,48 л), б) N2 (134,4 л), в) СО (6,72 л), г) Аr (336 л).
5.Определите объемы при н. у. следующих газов (массы газов указаны в скобках): a) NH3 (40,8 г), б) СО2 (11 г), в) SO2 (80 г), г) C2H6 (180 г).
6.Сколько молекул метана СН4 содержится в 0,112 л этого газа при н. у.?
7.Сколько атомов водорода содержится в 1 мл водорода (при н. у.)?
8.Сколько всего атомов содержится в 1 мл метана? Сколько из них атомов водорода? Какой объем при нормальных условиях займет 1,26.1025 молекул аммиака NH3? Какова его масса?
9.Каково в нем количество вещества водорода? А азота? Определите массу всего водорода, входящего в состав этой порции аммиака.
10.В каком значении употребляется слово " водород" в задачах 7 – 9 (в каждом из случаев)?
Глава 6.Строение электронных оболочек атомов
6.1. Особенности микромира
Законы, по которым "живут"частицы
Из основного свойства заряженных тел и частиц следует, что неподвижными электроны в атоме быть не могут. Ведь в этом случае они, притянувшись к ядру, просто упали бы на него, и атом перестал бы существовать. Следовательно, электроны в атоме движутся. Но уже Резерфорду было ясно, что просто вращаться вокруг ядра электроны не могут. В то время уже были известны законы электродинамики, в соответствии с которыми вращающийся вокруг ядра электрон обязан постепенно терять свою энергию, что должно приводить в конце концов, к его падению на ядро. Эта исключительно сложная проблема хоть и не всегда последовательно, но была решена в первой трети ХХ века в результате работ многих выдающихся физиков: Нильса Бора, Альберта Эйнштейна, Эрвина Шрёдингера, Вернера Гейзенберга, Макса Борна и многих других ученых. С основными выводами из этих работ мы с вами и познакомимся.
Изучая электроны, атомы, молекулы, а также процессы их взаимодействия, мы будем использовать некоторые