Эмми Нётер родилась в 1882 году в баварском Эрлангене на юге Германии. Она была на три года младше Эйнштейна, обладала великолепным научным умом и была решительно настроена преодолеть мизогинию и антисемитизм, осложнявшие ее карьеру. Нётер снова и снова отказывали в приеме на должности, хотя она была их достойна. В конце концов ей пришлось бежать из Германии. Она была смелой и умной, и ее современники-мужчины в большинстве просто не знали, что о ней и думать. Например, в 1913 году она встретилась в Вене с математиком Францем Мертенсом, и внук Мертенса вспоминал: “Хотя она была женщиной, [она] напомнила мне католического священника из сельского прихода — в черном, довольно безликом пальто длиной почти до щиколоток, в мужской шляпе, с короткими волосами <…> и сумкой, перекинутой через плечо, как у железнодорожного кондуктора имперских времен, она показалась мне довольно странной”. На Всемирной выставке 1964 года, состоявшейся в Нью-Йорке, на фреске “Деятели современной математики” было 80 портретов — 79 мужчин и Эмми Нётер. Друзья вспоминали, что она любила веселиться, была остроумной и шумной, а еще любила танцевать. Коллеги отмечали в ней щедрость духа и безудержную страсть к математике, желательно как можно более абстрактной. “Этой зимой я читаю курс о гиперкомплексных числах, и мне все это столь же интересно, как и моим студентам”, — писала она другу. Впрочем, один из коллег вспоминал, что она была “не столь хороша в роли преподавателя элементарных дисциплин в больших классах”.
К счастью, отец Эмми Нётер был профессором математики в Университете Эрлагена и поощрял таланты дочери. Сначала университет не позволил Нётер официально поступить на учебу, но принял ее в качестве “слушательницы”. Это значит, что она имела право посещать лекции по договоренности с профессорами, но при этом не могла претендовать на получение университетского диплома. В 1904 году в рамках демократизации образовательной политики женщинам позволили учиться в университетах. Нётер, как подобает, получила сначала магистерскую, а затем и докторскую степень, защитив диссертацию по теории инвариантов, относящейся к общей алгебре. После этого Нётер отправилась в Гёттингенский университет.
Входя в число старейших в Германии университетских городов, к началу XX века Гёттинген заслужил репутацию одного из лучших в Европе мест для изучения математики. Возглавлявший кафедру Давид Гильберт, один из величайших математиков XX века, пригласил Нётер работать преподавателем и исследователем, ознакомившись с ее диссертацией. В лице Гильберта Нётер нашла союзника, который ценил ее ум и готов был отстаивать ее право на работу, выступая против управлявшего университетом сената, члены которого — особенно преподаватели философского факультета — категорически отказывались официально признавать Нётер ученым. Они боялись, что, став профессором, она получит право войти в состав сената, где никогда не заседали женщины. Услышав это, Гильберт ответил: “Джентльмены, я не понимаю, почему пол кандидата препятствует его принятию. <…> В конце концов, сенат не баня”. После этого Гильберт позволил Нетер читать лекции под его именем и тем самым расстроил план гёттингенского сената отстранить ее от преподавания. Нётер работала так четыре года, не получая жалованья, — ее расходы покрывали родственники.
Нётер приехала в Гёттинген в 1915 году — в тот же год, когда Эйнштейн опубликовал общую теорию относительности, которая опровергала теорию тяготения Ньютона. Гильберта восхитили математические следствия работы Эйнштейна. Одной из причин, по которым он пригласил Нётер в Гёттинген, стало ее прекрасное знакомство с теорией инвариантов — ключевой техникой, используемой Эйнштейном. По сути, Гильберт поручил Нётер оценить правильность математики Эйнштейна.
Нётер преуспела в этом и более чем превзошла ожидания Гильберта. Изучая математику общей теории относительности, она нашла способ объяснить истинность первого начала термодинамики.
Теория инвариантов тесно связана с понятием симметрии. Наш мир полон симметрий — две половины человеческого лица почти зеркально отражают друг друга. Снежинки выглядят одинаково при повороте на 60°. Симметрия свойственна многим цветам, а также произведениям искусства и архитектуры, включая “Витрувианского человека” Леонардо да Винчи и Тадж-Махал.