Для математиков симметрия представляет собой пример “инвариантности”. Иными словами, это процесс, в ходе которого тело не претерпевает изменений. Самые простые примеры этого можно найти в геометрии. После поворота на 90° квадрат выглядит так же, как до поворота. Окружность полностью симметрична при вращении, поскольку вне зависимости от угла поворота она всегда выглядит одинаково. Стоит, однако, отметить, что концепция симметрии применима не только к изменениям в пространстве, но и к изменениям во времени. Если окружность не меняется с течением времени, то математик скажет, что такая окружность “симметрична относительно сдвига по времени”.
Проводя исследования для докторской диссертации, Нётер стала специалистом по симметрии. Анализируя теории Эйнштейна, она разглядела глубокую истину о нашей Вселенной. В математическом выражении, ныне называемом теоремой Нётер, она продемонстрировала, что энергия должна сохраняться, чтобы законы физики оставались неизменными с течением времени.
Возьмем простой пример, в котором движущийся бильярдный шар сталкивается с неподвижным. После столкновения шары расходятся в разные стороны. Направление и скорость их движения можно вычислить по законам механики. Если два бильярдных шара столкнутся в другое время — хоть на следующий день, хоть через двести лет, — их последующее поведение будет описываться теми же законами механики. Это может показаться очевидным, но важно понять: уравнения механики со временем не меняются. Нётер математически доказала, что уравнения демонстрируют такую симметрию, только если они связаны с неизменной величиной. Иными словами, чтобы законы механики были симметричны относительно сдвига по времени, нечто должно сохраняться. И это нечто мы называем энергией.
Теорема Нётер объясняет не только сохранение энергии. Она показывает, что всякий раз, когда уравнения содержат симметрию, некоторая величина должна сохраняться. Так, законы механики не предполагают, что разные точки пространства чем-то отличаются друг от друга. Бильярдные шары подчиняются этим законам, в какой бы точке Вселенной они ни находились. Это означает, что законам механики свойственна не только временная, но и пространственная симметрия. Чтобы обеспечить это, сохраняется величина, называемая импульсом. Здесь прослеживается связь с понятием инерции — знакомого чувства, которое возникает, когда в транспорте вас бросает вперед при резком торможении. Иными словами, это происходит, чтобы законы механики оставались одинаковыми в любой точке Вселенной. К другим сохраняемым величинам, связанным с симметрией, относятся момент импульса и электрический заряд.
Важный аспект теоремы Нётер заключается в том, что обратная ей теорема также верна, а значит, если законы механики не симметричны во времени, то энергия сохраняться не будет.
Прочитав работу Нётер, Эйнштейн написал Гильберту: “Я впечатлен, что подобные вещи можно понимать в таком общем виде. Старой гвардии Гёттингена следует поучиться у госпожи Нётер. Похоже, она знает свое дело”. С 1915 года открытие Нётер стало руководящим принципом физики. Когда в 1963 году американский физик Ричард Фейнман читал свои знаменитые публичные лекции, он назвал связь между симметрией и сохраняемыми величинами “фактом, который до сих пор потрясает большинство физиков своей глубиной и красотой”. К сожалению, рассказывая об открытии Нётер, он даже не упомянул ее по имени и упустил возможность привлечь внимание широкой публики к ее работе. Но теперь мы знаем, что значительная часть трудов, формирующих фундамент современной физики частиц, основана на теореме Нётер.
Работая над своей теоремой, Нётер четыре года преподавала под именем Гильберта, не получая жалованья. В 1919 году руководство университета наконец пошло на уступки и приняло Нётер на должность приват-доцента, тем самым позволив ей официально преподавать и получать зарплату. Однако, руководствуясь своими интересами, Нётер отошла от физики и занялась более абстрактными проблемами. Завершив исследования по общей относительности и симметрии, она обратилась к основам математики. Эта работа не имела прямого отношения к физике, но оказала огромное влияние на последующее развитие многих разделов математики, особенно алгебры и топологии.
Тем временем Эйнштейн превратился в узнаваемое лицо науки. Если о теореме Нётер знали только физики, то формула E = mc2
стала научным эквивалентом легендарной фразы “быть или не быть”, которую повторяли многие, а понимали лишь единицы. Статьи о теории относительности публиковались даже в