Сами митохондрии тоже участвуют в сохранении этого равновесия. Когда-то они были свободноживущими бактериями, нашедшими пристанище и защиту внутри более крупных клеток. Однако соглашение было двусторонним: интернализованные бактерии получили защиту, но за счет активного дыхания снизили концентрацию кислорода в хозяйской клетке. Теперь эта связь намного сложнее, но митохондрии по-прежнему уменьшают содержание кислорода в клетке. Если митохондрии работают плохо, а кровь продолжает поставлять кислород с прежней скоростью, клетки подвергаются окислению. По мере старения организма митохондрии работают все хуже и клетки окисляются все сильнее. Такое окисление часто связывают с утечкой свободных радикалов из дефектных митохондрий, но оно может быть результатом повышения концентрации кислорода в остальных отделах клетки из-за ослабления потребления кислорода митохондриями.
Дышащие кислородом организмы не могут от него прятаться. Им требуется постоянный приток кислорода, который является их главным или единственным источником энергии. Поэтому прятаться не только невозможно, но и опасно. Необходимо найти другое решение для предотвращения или ограничения опасного воздействия свободных радикалов с помощью антиоксидантных ферментов или его устранения (второй и третий способы защиты от свободных радикалов из нашего списка). Сначала я расскажу о ферментах.
Два самых важных антиоксидантных фермента — супероксиддисмутаза и каталаза. Почти все без исключения организмы, проводящие какое-то время на воздухе, имеют гены этих двух ферментов. Наличие данных ферментов практически во всех аэробных клетках подчеркивает парадокс цианобактерий. Эти бактерии были первыми фотосинтезирующими организмами, расщепляющими воду и производящими кислород. Если они эволюционировали в лишенном кислорода мире, они должны были подвергаться опасному воздействию токсичного продукта собственного метаболизма. Ошибочность этого стандартного довода мы обсуждали в главе 7. Мы видели, что, скорее всего, цианобактерии уже были защищены от кислорода супероксиддисмутазой и каталазой. Эти и другие ферменты возникли как реакция на образование активных промежуточных соединений кислорода под действием ультрафиолетового излучения в самом начале развития жизни на Земле. Мы с вами обсудили наблюдения, подтверждающие наличие таких ферментов в клетках последнего универсального общего предка.
Супероксиддисмутаза (СОД) занимает особое место в биохимии свободных радикалов. В начале 1950-х гг., когда ученые впервые выдвинули гипотезу о влиянии свободных радикалов на старение и развитие заболеваний, доказать эту гипотезу было очень сложно. Свободные радикалы очень недолговечны. На протяжении многих лет об их существовании судили только по причиненному ими вреду, что является доказательством столь же ненадежным и противоречивым, как использование гигантских отпечатков на снегу для доказательства существования снежного человека. И вот в 1968 г. Джo Маккорд и Ирвин Фридович из Университета Дьюка в Северной Каролине показали, что сине-зеленый белок гемокупреин, долгое время считавшийся инертным отложением меди, обладает каталитической активностью. Он превращает супероксидные радикалы (О2-+) в пероксид водорода (Н2О2) и кислород. Несмотря на активные поиски, ученые не смогли найти никакого другого субстрата этого фермента. Скорость превращения супероксидного радикала под действием фермента совершенно невероятна. Эти радикалы неустойчивы и за несколько секунд взаимодействуют между собой с образованием пероксида водорода, но гемокупреин ускоряет эту естественную реакцию в миллиард раз. Это не могло быть случайностью[64]. Маккорд и Фридович переименовали фермент, назвав его супероксиддисмутазой (COД) в знаменитой статье, опубликованной в 1969 г. в
Это открытие изменило направление исследований. Если столь активный фермент, как СОД, эволюционировал специально для устранения супероксидных радикалов, значит, супероксидные радикалы играют важную роль в биологических системах. Внимательно поглядев вокруг, мы увидим, что свободные радикалы — нормальный элемент биологических систем и жизнь создала удивительно эффективные механизмы, чтобы с этими радикалами справляться. Ненужные приспособления со временем подвергаются мутациям, а этот механизм сохранился, следовательно, он был необходим с самого начала. Что произойдет, если COД по какой-то причине станет работать менее эффективно и допускать присутствие в клетках свободных радикалов? Старение? Смерть? Вариантов множество, и все они чрезвычайно неприятные.