Читаем Кислород. Молекула, изменившая мир полностью

Внутри здоровой клетки содержится множество тихонько покачивающихся тиогрупп. Они находятся в неокисленном состоянии под присмотром глутатиона и тиоредоксина. Любая окисленная «по ошибке» тиогруппа тут же возвращается в исходное состояние. Глутатион и тиоредоксин образуются за счет энергии клеточного дыхания, как мы видели в главе 9 при обсуждении витамина С. В норме на это отводится небольшая часть клеточных ресурсов. Однако в условиях окислительного стресса ситуация резко изменяется.

Что происходит в клетке при окислительном стрессе? Источником стресса может быть избыток кислорода, инфекция или болезнь. Но результат один и тот же — повсюду разбегаются свободные радикалы. В работу сразу включаются антиоксиданты, такие как витамин С, обрывающие цепные реакции. Они регенерируются при участии глутатиона, но потери неизбежны. При исчерпании запаса антиоксидантов свободные радикалы производят еще более значительные разрушения. Начинают окисляться тиоловые группы белков. Некоторые восстанавливаются глутатионом и тиоредоксином, но равновесие сдвигается. Это зона вооруженного конфликта. Защитники не могут каждую ночь восстанавливать разбомбленные мосты. Уже в половине клеточных белков тиогруппы окислены, и активность этих белков выключена в ожидании конца войны. Другие белки включены. На защиту последнего бастиона, ядра, встает ополчение — транскрипционные факторы. Они связываются с ДНК в ядре и стимулируют синтез новых белков. Но каких белков? Выбор далеко не случайный. Клетке нужно принять серьезное решение: продолжить борьбу или покончить с собой (этот процесс называется апоптозом) во имя процветания всего организма. Решение зависит от вероятности успеха, в частности от количества и состояния транскрипционных факторов в ядре. Афоризм Ницше действует и на молекулярном уровне: что нас не убивает, делает нас сильнее.

Если клетка решает продолжить борьбу, а не умереть непобежденной, она применяет набор защитных мер, который одинаков у всех живых организмов — от Е. coli до человека. На настоящий момент защитная система Е. coli изучена лучше других — отчасти по той причине, что бактериальные гены организованы в функциональные кластеры, называемые оперонами. Гены в таких кластерах легче идентифицировать. Окисление тиогрупп приводит к активации двух основных транскрипционных факторов Е. соli. Один из них представляет собой содержащий тиогруппу белок под непонятным названием OxyR, другой — белок SoxRS с серой в составе железосерного кластера. В окисленном состоянии эти два фактора контролируют транскрипцию десятка генов, продукты которых усиливают антиоксидантную защиту клетки.

Список человеческих транскрипционных факторов, активность которых контролируется путем окисления тиогрупп, постоянно растет и включает в себя NFκ(каппа)В, Nrf-2, АР-1 и Р53. Для нашего рассказа самыми важными являются NFκB и Nrf-2. NFκB руководит реакцией на стресс путем активации генов нескольких «агрессивных» воспалительных молекул и нескольких защитных антиоксидантов. Nrf-2 играет исключительно защитную роль, в частности отключает гены воспалительных молекул. Таким образом, оба фактора усиливают клетку, но за счет противоположных действий. Они — как два генерала в военном штабе: один выступает за тотальную войну, другой занимает миротворческую позицию. Результат зависит от того, насколько каждому из них удастся убедить остальных членов штаба. В случае транскрипционных факторов это определяется количеством активированных белков. Если в ядро попадает 1000 белков, активированных NFκB, и только 100 белков, активированных Nrf-2, клетка начнет войну, запуская воспалительную реакцию против захватчиков и усиливая собственную защиту. Если побеждает Nrf-2, клетка выстраивает баррикады и ждет нападения. В любом случае дополнительная защита обеспечивает немедленное преимущество, но также позволяет оказывать сопротивление в будущем, вне зависимости от характера нападения. Предупрежден — значит, вооружен.

Каковы же продукты этих защитных генов? Некоторые из них пока не идентифицированы, с другими мы уже знакомы. Как можно догадаться, активизируется синтез СОД, каталазы и других антиоксидантных ферментов. Новые метаболические белки сопрягают клеточное дыхание с регенерацией глутатиона и тиоредоксина. Синтезируются дополнительные, находящие и связывающие свободное железо белки, а кроме того, ряд индуцируемых стрессом белков («стрессовых белков»), которые занимаются спасением того, что можно спасти, как спасательная служба после бомбардировки. Безнадежно испорченные белки направляются на расщепление и реутилизацию. Те, что повреждены, но подлежат восстановлению, упаковываются правильным образом при помощи белков-шаперонов. Другие белки занимаются починкой ДНК, отщепляя окисленные фрагменты, заменяя негодные участки и зашивая разрывы.

Перейти на страницу:

Все книги серии Civiliзация

Похожие книги