В 1980г Хасегаваи Мията[59]
предложили целочисленный вариант параметра массы аминокислот — число нуклонов в молекуле; позднее Владимир Щербак (см.«Новый параметр» и объекты его приложения позволили выявить удивительную картину. Чтобы ее оценить, надо иметь в виду два обстоятельства. Во-первых, основу
Различие в структуре аминокислот обеспечивается вариантами радикала (R
), а константную часть молекулы составляют показанные здесь два атома углерода, два — кислорода, один — азота и четыре — водорода. Их целочисленная нуклонная масса, то есть масса их нуклонов — 74 в свободном состоянии и 56 — в составе полипептида. Вариабельная нуклонная масса относится к радикалу и составляет от 1 (водородный протон) у глицина G до 130 у триптофана W. Приняв за случайность сам децимализм кода, на котором настаивает доктор Щербак, обнаруживаем, однако, что таблица кода в значениях нуклонных масс демонстрирует хорошо организованный набор
Ярко-зеленым в
Если скептически настроенный Читатель готов счесть всё это случайностью, обратимся на время к порядковым параметрам кодируемых аминокислот. В их значениях симетрии матрицы генетического кода приобретают такой вид:
Все три таблицы практически одинаковы. В левой матрица состоит из двух блоков — PSTG
\RWME и LQHFNAVD, симметричных относительно центральной колонки (а также относительно границы между первыми кодонными пуринами и пиримидинами) и равновесных по суммам позиционных номеров (81=81), а также двух «внутренних» (неокрашенных) пар с соотношением сумм 1:2. В центральной эти два блока разделены на две симметричные части каждый (PGRE и LHAD; 37=37) и STWM и QFNV(44=44). В правой таблице попарно соединены «угловые» блоки PIDE и GAHR, симметричные по диагоналям — так что каждая четверка характеризуется суммой 37. В принципе все эти значения можно в какой-то мере, рассматривать, как указание на децимализм генетического кода, на который указывают числа 37 (37*3=Мы же попытались связать симметрии двумерной матрицы с симметриями трехмерного (объемного) тела, геометрическая симметрия которого задавалась бы по определению: в нашем случае, как мы об этом сказали выше, это простейшее платоново тело, тетраэдр. Нам хотелось найти тетраэдр, в котором формальное равновесие (например равенство кооперативных нуклонных масс граней) сочеталось бы с равновесием по какой-либо из четко определенных функций, например, по принадлежности к синтетазному классу. Принципиально такая возможность возникает, если принять 20 кодируемых аминокислот с их числовыми параметрами за 20 равновеликих сфер-мономеров. Двадцать мономеров тетраэдра делятся на две структурообразующие группы:
— инвариантные мономеры (
— пара "внутренних"мономеров (