Мы нашли, что весьма простое условие, а именно —
(626+629 = 627+628)10
, или:(10.00
Пару
сводит число возможных версий трехмерной модели кода к единственной:
Правда, равновесную по граням модель можно также построить, заменив ребра QH
иVD на QV иНD и сохранив, таким образом, симметричный рисунок реберных мономеров в составе матрицы, однако, эта версия потребует сделать формулировку принципа сборки тетраэдра более свободной, поскольку наш тетраэдр характеризуется также полной симметрией по граням аминокислот двух арс-классов:на каждую его грань приходится равное (по 5) число мономеров-аминокислот каждого класса.Других столь же простых условий сборки тетраэдра с нуклонным равенством граней не существует. Также (естественно) не удается сформировать подобный тетраэдр, используя значения порядковых номеров этих мономеров в качестве их альтернативных параметров. Количественная симметрия имеет место только в отношении номеров инвариантных мономеров сплошной последовательности аминокислот (независимой от арс-класса): суммы номеров мономеров вершин полученного тетраэдра и центров его граней равны (и в случае нумерации по нарастанию нуклонной массы составляют замечательное — в контексте этой и предыдущей глав — десятичное число 37
).Инвариантные мономеры и сами по себе обладают целой серией собственных симметрий по первым, вторым и третьим основаниям своих кодонов, что является следствием их положения в составе матрицы кода. Читатель может самостоятельно организовать и проанализировать таблицы, необходимые для демонстрации этих симметрий.
В формате позиционных номеров аминокислот, принадлежащих к тому или другому арс-классу, отметим, что значения колоночных и построчных суммацийматрицы генетического кода имеют весьма замечательный вид: линейное нарастание сумм порядковых номеров центральных колонок, выраженное двух- или трех-значнымиинфрмационными символами, в комбинации со сдвиговой для трехзначных чисел (или зеркальной для двузначных) симметрией цифр в крайних колонках, а также в строках, соответствующих первым комплементарным основаниям кодонов:
Читателю предлагается обратить внимание на следующее:
— цифровые гомодублеты, как носители информации о симметрии, имеют здесь не меньшее значение, чем гомотриплеты;
— в тех случаях, когда значения линейно нарастающих сумм порядковых номеров центральных колонок в той или иной системе счисления не подчеркнуто гомодублетами
— в тех случаях, когда значения сумм колонок или строк имеют неодинаковое число разрядов в той или другой системе счисления, цифровые симметрии сумм крайних колонок невыразительны;
— то обстоятельство, что таблица справа (где арс-классы представлены как самостоятельные группы, то есть члены каждой имеют собственную, а не последовательную, нумерацию) демонстрирует симметрии не только по колонкам, но и по строкам, свидетельствует об определенной независимости классов;
— наконец, то обстоятельство, что обе таблицы демонстрируют не только числовые, но и цифровые симметрии, как будто поддерживает логику сравнения числового значения и цифрового порядка, которые — имея общее выражение — характеризуют описанный в предыдущей главе виртуальный олигопептид.
Паттерн этих матричных симметрий в значениях порядковых номеров аминокислот сходен с паттерном симметрий матрицы в значениях их нуклонных масс (см. выше):
.....................