Читаем Клеймо создателя полностью

Между тем число продуктов кодирования (20) дает соблазн собрать именно тетраэдр; надо только сформулировать простой принцип сборки, желательно учитывающий и кодирующие основания, и кодируемые аминокислоты, помня об упомянутом выше ограничении Эйгена: теория может быть корректной или нет; модель имеет третью возможность – оставаясь корректной, совершенно не относиться к делу (a theory has only the alternative of being wrong; a model has a third possibility – it might be right but irrelevant61). Зато у модели, как и сказано в Главе 69, есть и очевидное достоинство: представляя явление в неожиданном ракурсе, она заставляет думать.

Здесь мы, однако, рассказываем не просто о геометрической симметрии генетического кода (о ней уже шла речь в Главе А), но о моделях, симметрия которых базируется на оцифровке генетического кода, реализуемой по тому или иному принципу. Более того, этот подход привлекает нас, в первую очередь, тогда, когда такой оцифровке подвергаются оба компонента кода, а не только продукты кодирования. В конце предыдущей главы (Глава Б) мы описали «виртуальный олигопептид», который демонстрировал равновесие совокупных нуклонных масс стандартных и вариабельных частей кодируемых продуктов. Мы обнаружили, что этот «олигопептид» имеет любопытные арифметические свойства в отношении составляющих его кодирующих оснований, которые, неожиданно подчеркивают акцентируемый Щербаком децимализм генетического кода. Параметр, выявляющий обнаруженные свойства, представляет собой простой номер каждого из четырех азотистых оснований в их упорядоченном по изменению молекулярной массы ряду. В данной главе мы попытаемся проанализировать организацию генетического кода, используя оба указанных параметра (нуклонные числа и порядковые номера) обоих компонентов кода. Если эта попытка окажется удачной, и мы найдем, что одна и та же организация кода (модель) характеризуется арифметическими симметриями по каждому из этих параметров, тогда легкомысленная готовность Автора сравнивать десятичное число 3412 и цифровой ряд 3412 по чисто внешнему сходству, может показаться Читателю не такой уж смешной.

Вернемся к матрице генетического кода, «аналоговая» версия которой описана в Главе А. Ее оцифровка в параметрах нуклонных масс («сжатая» версия – без пятой, @-строки) реализуется упорядоченными по массе последовательностями первых кодонных оснований (по вертикали) и соответствующих им продуктов (по горизонтали); слева – аминокислоты в «нейтральной» версии (0), справа – в заряженной (+/-). Под символом каждой аминокислоты – ее нуклонная масса (нуклонная масса боковой цепи ее молекулы).



Организующая матрицу последовательность первых триплетных букв – CTAG – демонстрирует не только симметрию по комплементарности СG, A=T (черточки между основаниями символизируют число водородных связей, которые их объединяют), но и совпадающую с ней количественную симметрию цифрового ряда 1234: 1+4=2+3. Комплементарность оснований позволяет собрать и другой ряд – AGCT, в котором упорядоченность по массе комплементарных пар имеет общее направление. Этому ряду и соответствует цифровая последовательность 3412, описанная в предыдущей главе.

Теперь, чтобы объединить в общем представлении и аминокислоты, и азотистые основания, надо описать те и другие в общих терминах. В нашем случае это – либо нуклонная масса вариабельных частей молекулы, либо простое перечисление элементов, упорядоченных по массе. Выбор вариабельной части молекул аминокислот очевиден – это их боковая цепь. Вариабельная часть молекулы азотистого основания не представляет собой столь ясно выделяемую структуру. В то же время стандартным блоком, общим для всех оснований, является вполне выраженная структура – гексацикл (шестичленное кольцо из четырех атомов углерода, 2—4—5—6, и двух – азота 1—3):



Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Цикл космических катастроф. Катаклизмы в истории цивилизации
Цикл космических катастроф. Катаклизмы в истории цивилизации

Почему исчезли мамонты и саблезубые тигры, прекратили существование древние индейские племена и произошли резкие перепады температуры в конце ледникового периода? Авторы «Цикла космических катастроф» предоставляют новые научные свидетельства целой серии доисторических космических событий в конце эпохи великих оледенении. Эти события подтверждаются древними мифами и легендами о землетрясениях, наводнениях, пожарах и сильных изменениях климата, которые пришлось пережить нашим предкам. Находки авторов также наводят на мысль о том, что мы вступаем в тысячелетний цикл увеличивающейся опасности. Возможно, в новый цикл вымирания… всего живого?The Cycle Of Cosmic Catastrophes, Flood, Fire, And Famine In The History Of Civilization ©By Richard Firestone, Allen West, and Simon Warwick-Smith

Аллен Уэст , Ричард Фэйрстоун , Симон Уэрвик-Смит

История / Научная литература / Прочая научная литература / Образование и наука