Все три таблицы практически одинаковы. В левой матрица состоит из двух блоков – PSTG
\RWME и LQHF\NAVD, симметричных относительно центральной колонки (а также относительно границы между первыми кодонными пуринами и пиримидинами) и равновесных по суммам позиционных номеров (81=81), а также двух «внутренних» (неокрашенных) пар с соотношением сумм 1:2. В центральной эти два блока разделены на две симметричные части каждый (PGRE и LHAD; 37=37) и STWM и QFNV (44=44). В правой таблице попарно соединены «угловые» блоки PIDE и GAHR, симметричные по диагоналям – так что каждая четверка характеризуется суммой 37. В принципе все эти значения можно в какой-то мере, рассматривать, как указание на децимализм генетического кода, на который указывают числа 37 (37*3=Мы же попытались связать симметрии двумерной матрицы с симметриями трехмерного (объемного) тела, геометрическая симметрия которого задавалась бы по определению: в нашем случае, как мы об этом сказали выше, это простейшее платоново тело, тетраэдр. Нам хотелось найти тетраэдр, в котором формальное равновесие (например, равенство кооперативных нуклонных масс граней) сочеталось бы с равновесием по какой-либо из четко определенных функций, например, по принадлежности к синтетазному классу. Принципиально такая возможность возникает, если принять 20 кодируемых аминокислот с их числовыми параметрами за 20 равновеликих сфер-мономеров. Двадцать мономеров тетраэдра делятся на две структурообразующие группы:
инвариантные мономеры (
пара «внутренних» мономеров (
Мы нашли, что весьма простое условие, а именно –
(626+629 = 627+628)10
, или:(10.00
Пару
сводит число возможных версий трехмерной модели кода к единственной:
Правда, равновесную по граням модель можно также построить, заменив ребра QH
и VD на QV и НD и сохранив, таким образом, симметричный рисунок реберных мономеров в составе матрицы, однако, эта версия потребует сделать формулировку принципа сборки тетраэдра более свободной, поскольку наш тетраэдр характеризуется также полной симметрией по граням аминокислот двух арс-классов:на каждую его грань приходится равное (по 5) число мономеров-аминокислот каждого класса.Других столь же простых условий сборки тетраэдра с нуклонным равенством граней не существует. Также (естественно) не удается сформировать подобный тетраэдр, используя значения порядковых номеров этих мономеров в качестве их альтернативных параметров. Количественная симметрия имеет место только в отношении номеров инвариантных мономеров сплошной последовательности аминокислот (независимой от арс-класса): суммы номеров мономеров вершин полученного тетраэдра и центров его граней равны (и в случае нумерации по нарастанию нуклонной массы составляют замечательное – в контексте этой и предыдущей глав – десятичное число 37
).Инвариантные мономеры и сами по себе обладают целой серией собственных симметрий по первым, вторым и третьим основаниям своих кодонов, что является следствием их положения в составе матрицы кода. Читатель может самостоятельно организовать и проанализировать таблицы, необходимые для демонстрации этих симметрий.