Оратор, не проявивший должной осторожности и сдвинувшийся с места во время своей речи, обнаруживает, что акустика вольно обращается с его красноречием, превращая крещендо в комические вопли или заставляя самые тихие звуки, произнесенные театральным шепотом, взвизгивать и выть по мере того, как он перемещается от одной фокальной точки эха к другой[264]
.В 1898 г. взрыв газа и пожар в другой части здания привели к тому, что деревянный купол заменили огнестойкой конструкцией. Фальшивый кессонный потолок заменили настоящим, из штукатурки, в результате чего эффект фокусировки звука ослаб и стал менее заметным. Как отметил выдающийся акустик Лотар Кремер, «ко всеобщему разочарованию, знаменитый фокусирующий эффект значительно ослаб, поскольку точное геометрическое отражение сменилось нечетким диффузным»[265]
.Заменить гладкую поверхность на другую, покрытую углублениями и выступами, – все равно что взять идеальное оптическое зеркало и поцарапать его или сделать матовым. Неровности поверхности приводят к тому, что свет или звук рассеиваются и не попадают в фокальную точку. В случае оптического зеркала изображение получается размытым; у купола Капитолия это рассеяние ослабляет отражения звука, и шепот звучит тише, а голоса искажаются меньше.
Влияние потолочных ячеек на фокусировку звука в Капитолии напоминает мне инженерный проект, над которым я работал несколько лет назад. Я разрабатывал рассеивающие поверхности для большого круглого Театра Расмусона в Национальном музее американских индейцев в Вашингтоне. Чтобы искривленные поверхности не фокусировали звук и не создавали эха, я разработал бугристое покрытие, которое, подобно ячейкам на потолке Капитолия, рассеивало звук во всех направлениях, а не отражало в фокальную точку. Профиль этого диффузора похож на силуэт города на фоне неба (рис. 5.3). Когда звуковые волны сталкиваются с диффузором, выступы разной высоты направляют отражения в разные стороны.
Рис. 5.3. Диффузор, сконструированный для вогнутой стены Национального музея американских индейцев
Моя задача состояла в том, чтобы определить, в каких местах помещать «небоскребы» и какой они должны быть высоты. Я использовал метод проб и ошибок, в котором компьютерная программа проверяет множество разных профилей. Для каждой конфигурации программа просчитывает, как звук будет отражаться от поверхности, и определяет, устранится ли фокусировка звука от изогнутой стены. Программа меняет конфигурацию «небоскребов», пока не будет найдено удовлетворительное решение. Этот интерактивный процесс, известный как
Больше всего в куполе удивляет то, что, когда вы стоите прямо под его центром и хлопаете в ладоши, секунду спустя вас оглушает эхо вашего хлопка. Если же в притворном ужасе вы воскликнете «A HANDbag?», то через секунду на вас с небес обрушится голос Эдит Эванс[267]
.Так журналист Майкл Кингтон побуждает вас почувствовать себя леди Брэкнелл из пьесы Оскара Уайльда «Как важно быть серьезным». Купола забавны, но еще лучше комната в виде сферы, поскольку отражения в ней усиливаются еще больше.
«Маппариум» в Бостоне представляет собой сферу диаметром 9 метров; он был построен в 1935 г. по предложению архитектора Честера Линдсея Черчилля. Это гигантский полый глобус с яркими морями и континентами, нарисованными на цветном стекле. На роспись и обжиг 608 стеклянных панелей ушло восемь месяцев; затем панели закрепили на бронзовом каркасе. Посетители идут по дорожке через центр Земли, связывающей две противоположные точки на экваторе. Снаружи глобус освещают триста лампочек. Посетители с интересом разглядывают нашу Землю изнутри, но не меньшее впечатление на них производит и необычная акустика, которая является случайным побочным продуктом геометрии.
Рис. 5.4. Фокусировка звука в «Маппариуме»