...Огюст Шевалье выполнил последнюю волю своего друга - уже в 1832 г. в "Энциклопедическом обозрении" он опубликовал письмо, написанное Эваристом накануне дуэли. Правда, никакого отклика в научном мире эта публикация не нашла. Младший брат Галуа Альфред поклялся умирающему, что приложит все силы, чтобы опубликовать его рукописи. Сохранились тщательно переписанные Огюстом работы Галуа и копия письма Альфреда к Якоби.
От Шевалье рукописи попадают к знаменитому математику Ж. Лиувиллю, который попытался разобраться в наследии Галуа. Самую важную его работу он опубликовал (в 1846 г.) в "Журнале чистой и прикладной математики". Публикация сопровождена пространным предисловием. Отмечая достоинства открытий Галуа, Лиувилль вместе с тем пытался защитить и оправдать тех, кто в свое время не смог и не пожелал понять Галуа. В предисловии, в частности, говорилось:
"Главным объектом исследований Эвариста Галуа являются условия разрешимости уравнений в радикалах. Автор строит основы общей теории, которую детально применяет к любому уравнению, чья степень - простое число. Шест надцати лет, на скамье Луи ле Гран, работал Галуа над этой сложной темой. Он последовательно представил в Академик ряд работ, содержащих результаты его размышлений
Референтам показались неясными формулировки молодого математика, и следует признать, что упрек был не лишен основании. Преувеличенное стремление к краткости породило этот недостаток, которого нужно в первую очередь избегать, когда имеешь дело с отвлеченными и таинственными категориями чистой алгебры. Тому, кто намерен вести читателя к неизведанной земле, далеко от проторенной дороги, воистину необходима ясность. Как сказал Декарт: "Когда имеешь дело с трансцендентальными вопросами, будь трансцендентально ясен" Слишком часто пренебрегал Галуа этой заповедью, и понятно почему знаменитые математики могли счесть необходимым направить одаренного, но неопытного новичка на правильный путь суровым советом. Автор, которого они осудили, был полон энергии и рвения: их совет мог оказаться ему полезен
Теперь все иначе. Галуа больше нет! Остережемся бессмысленной критики; пройдем мимо недочетов и обратимся к достоинствам..." Как видим, Лиувилль не только оправдывает людей сыгравших роковую роль в судьбе ученого, но и сам говорит о "недочетах"...
В этом же предисловии Лиувилль объявил о том, что намерен снабдить работу Галуа комментариями, но он никогда их не написал. Лиувилль утверждал, что понять доказательство очень легко, правда, при этом он добавлял: "Достаточно на месяц-другой посвятить себя исключительно этой работе не думая ни о чем другом".'
Это затруднение, в котором в свое время признался Пуассон, хорошо объяснил автор очерка о Галуа математик Бертран: "Прежде чем написать работу, Галуа больше года производил смотр бесчисленной армии сочетаний, подстановок Ему пришлось отобрать и пустить в ход все дивизии, бригады полки и батальоны и выделить простые подразделения Чтобы понять его изложение, читателю нужно познакомиться с этим сборищем, проложить сквозь него дорогу, научиться видеть его в нужном свете. На все это нужны долгие часы и активное внимание. Этого требует сущность темы. И мысли и язык являются новыми. Их не изучить за один день".
Лиувилль не только не написал комментарии, но помешал это сделать другим. Он прочитал для нескольких друзей ряд лекции о теории Галуа. На этих лекциях присутствовал математик Серре. Несколько лет спустя он выпустил "Учебник высшей математики" - об открытиях Галуа в нем не было ни слова. Серре не хотел незаконно воспользоваться правами своего учителя - Лиувилля. Через пятнадцать лет готовилось к выпуску в свет второе издание "Учебника"; в нем 61 страница отводилась теории Галуа. Бертран корректировал оттиски. Но, уступая желанию Лиувилля, Серре из этого издания изъял уже напечатанные страницы. Чтобы уладить дело с наборщиком, он написал столько же страниц на совершенно другую тему.
Почти через сорок лет после смерти Эвариста Галуа, в 1870 г. К. Жордан создал обширный труд (667 стр.) о теории подстановок. Это - по мнению самого автора - лишь комментарий к работе Галуа. Именно труд К. Жордана привлек внимание математического мира к идеям Галуа и принес ему посмертную славу. Во введении хорошо было сказано о значении метода Галуа: "Галуа было суждено дать четкое обоснование теории разрешимости уравнений... Проблема разрешимости, прежде казавшаяся единственным объектом теории уравнений, ныне представляется первым звеном в длинной цепи вопросов, касающихся преобразования и классификации иррациональных чисел. Применяя свои общие методы к этой частной проблеме, Галуа без труда нашел характерное свойство групп уравнений, разрешимых в радикалах".