Когда кислород недоступен, клетки сжигают глюкозу с помощью другого химического процесса – гликолиза, который вырабатывает всего две молекулы АТФ, а также отходы – молочную кислоту. В некоторых обстоятельствах это вполне разумный компромисс: получить АТФ менее эффективным способом, но зато без кислорода. Например, высокоинтенсивные физические нагрузки вроде бега на короткие дистанции требуют большого количества энергии. К клеткам притекает недостаточно крови, чтобы полностью обеспечить потребность в кислороде, так что мышцам приходится использовать анаэробный (бескислородный) гликолиз. Именно из-за молочной кислоты у нас болят мышцы после сильных физических нагрузок. Гликолиз позволяет вырабатывать энергию даже без кислорода, но вырабатывает лишь две, а не 36 молекул АТФ из одной молекулы глюкозы. Соответственно, вы не сможете далеко убежать со всех ног – ваши мышцы устанут, и придется остановиться и отдохнуть. К мышцам прильет кровь, смоет накопившуюся молочную кислоту, и вы постепенно восстановитесь.
опухоли достигают своих целей, вызывая мутации в нормальных генах, а с нестабильным генетическим материалом это сделать легче. Вторая способствующая характеристика – воспаление, вызывающее опухоли. Воспаление – это естественная реакция на травму или раздражение ткани. Обычно это защитная реакция организма, но в некоторых случаях она может способствовать прогрессу рака.
Окислительное фосфорилирование в митохондриях вырабатывает из одного и того же количества глюкозы в 18 раз больше энергии, чем гликолиз. Это такой эффективный процесс, что нормальные клетки при доступности кислорода почти всегда используют фосфорилирование. А вот раковые клетки, как ни странно, действуют иначе. Раковые клетки почти всегда используют менее эффективный гликолитический сигнальный путь,
Поскольку эффект Варбурга (аэробный гликолиз) менее энергоэффективен, раковой опухоли требуется намного больше глюкозы, чтобы поддерживать метаболизм. Чтобы компенсировать этот недостаток, раковые клетки экспрессируют на своей поверхности намного больше глюкозных транспортеров GLUT1. Это ускоряет перемещение глюкозы из крови в клетку. Позитронно-эмиссионная томография (ПЭТ) эксплуатирует эту жадность раковых клеток до глюкозы. В организм вводится глюкоза, помеченная с помощью радиации, и клеткам дается время, чтобы впитать ее. А потом томография показывает те области, которые усваивают глюкозу быстрее всего. Такие «горячие точки» – свидетельство опухолевой активности.
Это очень интригующий парадокс. Раковая опухоль быстро растет и, соответственно, требует
Особенность № 8. Избегание иммунного разрушения
Иммунная система активно ищет и уничтожает раковые клетки. Например, естественные киллеры (NK-клетки) здоровой иммунной системы постоянно патрулируют кровь в поисках незваных гостей – бактерий, вирусов, раковых клеток. Именно поэтому у пациентов с нарушениями иммунной системы – например ВИЧ-инфицированных или принимающих иммунодепрессанты (скажем, после трансплантации органов) – вероятность развития рака намного выше.
Чтобы выжить, раковые клетки должны каким-то образом прятаться от иммунной системы, созданной для того, чтобы их убивать. Пока опухоль растет внутри ткани, эта ткань может служить для нее укрытием – иммунной клетке нелегко попасть внутрь. Но вот когда рак начинает распространяться по крови, он сталкивается с враждебными иммунными клетками непосредственно.
Определение рака
Восемь вышеперечисленных особенностей представляют собой общее мнение лучших ученых; характерные признаки помогают определить, с раком мы имеем дело или нет. Чтобы объединить множество видов рака в одно заболевание, приходится, конечно, отбросить немало мелких деталей, но зато большая картина становится видна яснее. Например, эти восемь отличительных особенностей можно еще упростить, получив в результате четыре.
Новообразование можно считать раком, если оно:
• Растет – поддерживает пролиферативные сигналы (1), избегает супрессоров роста (2), сопротивляется клеточной смерти (3) и вызывает ангиогенез (5);
• Бессмертно – достигает репликационного бессмертия (4);
• Передвигается – активирует инвазию и метастазирование (6) и избегает иммунного разрушения (8); и
• Использует эффект Варбурга – дерегулирует клеточную энергетику (7).