Читаем Кому нужна математика? Понятная книга о том, как устроен цифровой мир полностью

Кроме того, выражение (П.7) всегда меньше, чем 3 (1 − p)². Поэтому если вероятность неисправности канала (1 − p) уменьшается, то вероятность потери связи в сети уменьшается еще быстрее. Когда вероятность (1 − p) очень мала, то термином −2 (1 − p)³ можно пренебречь. Тогда вероятность потери связи в сети приблизительно равна 3 (1 − p)². Если (1 − p) = 0,01 (то есть 1 %), то эта формула верна до третьего знака после запятой, что мы и видим в последней строчке табл. 4.1.

2. Теорема Эрдеша – Реньи о фазовом переходе

Теорема (Эрдеша – Реньи).Допустим, граф состоит из п вершин. Предположим, что ребра независимы друг от друга и любые две вершины соединены ребром с вероятностью р(п). Обозначим вероятность помехи через q(n) = 1 − p(n) и предположим, что



(i) Если c > 1, то вероятность связности стремится к единице при п, стремящемся к бесконечности, причем скорость стремления к единице тем выше, чем больше число с. Например, при c ≥ 3 скорость стремления к единице не ниже, чем у выражения 1 − 1/n, как в разделе «Результат Эрдеша – Реньи» в главе 4.

(ii) Если c < 1, то вероятность связности стремится к нулю при п, стремящемся к бесконечности, причем скорость стремления к нулю тем выше, чем меньше число с.

(iii) При c = 1 вероятность связности стремится не к нулю и не к единице, а к числу e−1 ≈ 0,3679, где e = 2,71828… – основание натурального логарифма.

3. Идея доказательства результата Эрдеша – Реньи

Допустим, граф состоит из n вершин. Предположим, что ребра независимы друг от друга и любые две вершины соединены ребром с вероятностью р(п). Обозначим вероятность помехи через q(n) = 1 − p(n). Рассмотрим одну вершину. Вероятность того, что она не соединена ребром ни с одной из оставшихся n − 1 вершин, равна


(q(n))n−1.


Поскольку всего вершин п, то в среднем число вершин, которые не соединены ребрами ни с одной другой вершиной, составит


n(q(n))n−1.


Возьмем, как и прежде,



Вспомните один известный замечательный предел



где е – основание натурального логарифма. Интуитивно результат следует из похожего предельного перехода:



Давайте посмотрим, о чем нам говорит эта формула.

Если c < 1, то в среднем число вершин, у которых нет ни одного ребра, стремится к бесконечности. В этом случае таких вершин будет очень много, связность сети с большой вероятностью будет потеряна.

Если c > 1, то в среднем число вершин, у которых нет ни одного ребра, стремится к нулю. Значит, с большой вероятностью таких вершин не будет и связность сети сохранится.

Таким образом, мы видим, откуда появляется фазовый переход!

Наконец, если c = 1, то в среднем число вершин, у которых нет ни одного ребра, равно единице. Заметим, что единица – это среднее значение, а в реальности таких вершин может быть 0, 1, 2… Можно доказать, что соответствующее распределение вероятности близко к закону Пуассона с параметром 1:



Соответственно, вероятность того, что таких вершин не будет, то есть связность сети сохранится, равна е–1.

Добавим, что это еще не строгое доказательство, потому что мы проанализировали только среднее количество вершин, у которых нет ни одного ребра. Для завершения доказательства нужно еще показать, что в случае c < 1 и c > 1 число вершин без ребер относительно мало отклоняется от среднего значения. Для этого разработаны стандартные методы, в частности, основанные на неравенствах Маркова и Чебышева. Эти неравенства названы в честь замечательных русских математиков, стоявших у истоков теории вероятностей.

Назад к Главе 4

Приложение к главе 5

Анализ метода выбора из двух

Допустим, у нас n серверов. Заявки (или задания) поступают с интенсивностью λn в единицу времени, и каждый сервер в среднем обрабатывает одно задание в единицу времени, то есть загрузка системы равна λ < 1 (если λ ≥1, то система перегружена, очередь будет расти до бесконечности). Рассмотрим случай, когда n очень велико и стремится к бесконечности.

Перейти на страницу:

Похожие книги

Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика