Читаем Кому нужна математика? Понятная книга о том, как устроен цифровой мир полностью

Обозначим через fk долю серверов, у которых ровно k заявок (заявка, которая находится на обслуживании в данный момент, тоже учитывается). Обозначим через uk долю серверов, у которых заявок k или больше. Значения uk можно легко получить через fk и наоборот:



Понятно, что u0 = 1.

Представим, что система находится в равновесии. Тогда у нас в среднем



серверов, на которых ровно k заданий. Все эти серверы обрабатывают задания со скоростью одно задание в единицу времени. Другими словами, количество серверов с k заявками или больше уменьшается на n(ukuk+1) в единицу времени.

Теперь давайте посмотрим, на сколько количество серверов с k заявками или больше увеличивается в единицу времени. Чтобы увеличить число таких серверов, заявки должны поступать на серверы, у которых в данный момент k − 1 заявка. При методе выбора из двух вероятность того, что новое задание попадет на сервер с k или больше заявками, равна



потому что в этом случае оба случайно и независимо выбранных сервера должны иметь k или больше заявок, и для каждого из двух серверов эта вероятность иk[26]. Значит, вероятность того, что новая заявка поступит на сервер, у которого ровно k − 1 заявка, равна



Поскольку заявок в единицу времени поступает λп, то получается, что число серверов с k или больше заявками в единицу времени в среднем увеличивается на



Так как система находится в равновесии, число серверов с k или больше заявками должно оставаться неизменным, то есть (П.9) равняется (П.11). Отсюда получаем уравнение баланса:



Результат, приведенный в работе{34}, говорит, что при определенных общепринятых предположениях о законе поступления заданий и времени их выполнения, в пределе для бесконечного количества серверов, уравнение (П.12) действительно описывает равновесное состояние системы. Это достаточно сложный технический результат. Нетрудно проверить или даже догадаться, что решение уравнения (П.12) задается формулами:



Это так называемый двойной экспоненциальный закон. Двойка в формуле, та самая двойка – вторая степень – из выражения (П.10). Точно так же мы могли бы выбирать не из двух, а из r серверов и получили бы



Интересно заметить, что при тех же предположениях, но случайном выборе одного сервера, изменятся выражения (П.10) и, соответственно, (П.11). Действительно, на этот раз заявка выбирает только один сервер и вероятность попасть на сервер с k или больше заявками равна просто иk. Тогда вместо (П.12) получаем классическое уравнение баланса:



решение которого задается известной формулой Эрланга:



Очевидно, что иk в формуле (П.13) убывает гораздо быстрее.

Именно эти формулы мы использовали в табл. 5.1. В нашем случае λ = 0,9, и в таблице мы привели значения fk. В первой колонке – значения k, во второй – значения fk, подсчитанные по формуле (П.14), в третьей – значения fk, подсчитанные по формуле (П.13).

Назад к Главе 5

Приложения к главе 6

1. Схема Диффи – Хеллмана

Для начала введем обозначения. Пусть р – заданное простое число, g – заданное натуральное число, g < p. На самом деле g это так называемый первообразный корень числа р. Об этом мы расскажем ниже, в приложении 2 и приложении 3 к главе 6. Цель данного раздела – доказать, что в схеме Диффи – Хеллмана Алиса и Боб действительно получают один и тот же ключ.

Для любых натуральных чисел n и р мы воспользуемся стандартным обозначением для остатка от деления n на р:


n(modp) = [остаток от деленияnнаp].


(Читается «n по модулю p».)

Итак, Алиса задумала число х, а Боб число у. Схема Диффи – Хеллмана состоит из двух шагов.


Шаг 1. Алиса передает Бобу


a = (gx) (modp).


Боб передает Алисе


b = (gy) (modp).


Шаг 2. Алиса вычисляет ключ


KA = (bx) (modp).


Боб вычисляет ключ


KB = (ay) (modp).


Утверждение.Боб и Алиса получили один и тот же ключ K = KA = KB.

Доказательство. Нам нужно доказать, что KA = KB. Поскольку а и b – это остатки от деления на р, то существуют такие целые числа k и l, при которых


a =gxkp, b =gylp.


Подставив эти выражения в формулы для ключей, получаем:


KA = (gylp)x(modp),

KB = (gxkp)y(modp).


Заметим, что в выражении для KA можно расписать (gylp)x следующим образом:



где А – это целое число, то есть рА делится на р. Таким образом получаем


KA = ((gylp)x) (modp) = ((gy)x +pA) (modp) = (gy)x(modp).


Совершенно аналогично для какого-то целого числа B получаем


KB = ((gxkp)y) (modp) = ((gx)y +pB) (modp) = (gx)y(modp).


Результат теперь очевиден, поскольку


(gy)x =gyx =gxy = (gx)y.

2. Дискретное логарифмирование

Вспомним, что логарифм числа у по основанию g – это такое число х, для которого выполняется


gx =y.


Перейти на страницу:

Похожие книги

Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика