Читаем Космологические коаны. Путешествие в самое сердце физической реальности полностью

Есть еще один момент, необходимый для завершения картины. Предположим, мы задаем системе какие-то вопросы и получаем какие-то ответы — и в результате система переходит в некоторое состояние, соответствующее только что полученным нами ответам. Оставим теперь ее в покое. Что с ней будет происходить? Квантовая механика утверждает, что квантовое состояние само по себе изменяется со временем, и это изменение описывается некоторым уравнением, названным в честь Эрвина Шрёдингера. Как и в уравнениях Ньютона и Максвелла, в уравнении Шрёдингера используются начальные условия для системы — ее состояние в начальный момент — и определяется ее состояние во все последующие моменты времени. Таким образом, мы получаем описание и прогноз дальнейшего поведения системы, то есть эволюцию ее состояния.

Пожалуй, новых понятий — квантовое состояние, суперпозиции, уравнение Шрёдингера и вероятности при измерениях — появилось слишком много, так что нужно время, чтобы с ними освоиться. Хорошая новость, однако, состоит в том, что в действительности это почти все, что есть в квантовой механике. Разумеется, есть огромное множество невероятно тонких сопутствующих идей и приложений, а также множество технических приемов, позволяющих применить их к конкретным системам, но основное ядро теории составляют только эти несколько элементов.

Давайте подведем итоги, сравнив предсказания в рамках квантового формализма с тем, как это будет делать наш (классический) симулятор. Для начала мы определим конкретный процесс измерения, состоящий в определении того, какая сторона игральной кости находится вверху, а также определим набор состояний, каждое из которых соответствует одному из шести возможных результатов измерения. Затем в данный начальный момент времени припишем системе какое-то состояние на основе нашего знания о ней или измерения ее свойств. Далее мы посмотрим, как система эволюционирует, используя уравнение Шрёдингера. И тогда, наконец, зададим свой вопрос: какая грань окажется сверху? Для того чтобы это предсказать, рассчитаем состояние системы в момент, когда будет произведено измерение, с помощью правила Борна сравним его с каждым из состояний при возможных исходах и, наконец, на основе этого сравнения присвоим каждому исходу свою вероятность.

Таким образом, возникает довольно прозрачная аналогия между тем, как с одной стороны квантовая механика, а с другой — «симулятор», работа которого основана на не квантовой физике, прогнозируют результат бросания кости, прослеживая эволюцию брошенной кости от некоторых начальных условий (рис. ниже). Оба процесса дают результат с некоторой неопределенностью. Но эти неопределенности имеют принципиально разную природу. Результат симулятора неопределенен из-за небольших неточностей — как в начальных условиях, так и в динамике, — и эти маленькие неопределенности превращаются в процессе полета кости в большие. Однако легко представить, что, взяв лучшие камеры, более быстрые компьютеры и усовершенствовав программы, можно улучшить точность предсказания.

Предсказание результата бросания кости с помощью квантовой механики и классического симулятора.

В квантовом случае мы не обязательно получим определенный ответ на интересующий нас вопрос, даже если мы задали его немедленно и даже если начальное состояние известно с идеальной точностью. Хуже того: динамика системы делает чрезвычайно маловероятной возможность, что состояние кости даст определенный ответ на вопрос, который мы зададим позже. Уравнение Шрёдингера (как мы вскоре увидим) «пытается размыть» состояния с точным местоположением в состояния с постепенно все менее определенным положением или скоростью. Уточним для ясности, что квантовые неопределенности у объектов в повседневной жизни чрезвычайно малы, и у нас есть огромный запас времени для того, чтобы улучшать точность нашего великолепного симулятора процесса бросания кости, не заботясь об этих неопределенностях. Но на каком-то уровне точности они появятся и станут абсолютно неустранимыми.

Итак, могут ли быть такие броски кости, результаты которых не сумеет уверенно предсказать даже джинн с его идеальным пониманием мира? Квантовая теория отвечает на этот вопрос утвердительно. При достижении совершенного знания джинн приобретает состояние, в котором предсказание некоторых наблюдаемых обязательно будет не определенным, а вероятностным. Даже если он знает все, что нужно знать, и в точности знает, как отвечающее этому знанию состояние развивается во времени, он не сможет ответить с уверенностью на некоторые совершенно уместные и очень существенные вопросы. И джинну не удастся привести определенных достаточных оснований, объясняющих, почему исход будет тем, а не иным.

Перейти на страницу:

Похожие книги

27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»

Не важно, что вы пишете – роман, сценарий к фильму или сериалу, пьесу, подкаст или комикс, – принципы построения истории едины для всего. И ВСЕГО ИХ 27!Эта книга научит вас создавать историю, у которой есть начало, середина и конец. Которая захватывает и создает напряжение, которая заставляет читателя гадать, что же будет дальше.Вы не найдете здесь никакой теории литературы, академических сложных понятий или профессионального жаргона. Все двадцать семь принципов изложены на простом человеческом языке. Если вы хотите поэтапно, шаг за шагом, узнать, как наилучшим образом рассказать связную. достоверную историю, вы найдете здесь то. что вам нужно. Если вы не приемлете каких-либо рамок и склонны к более свободному полету фантазии, вы можете изучать каждый принцип отдельно и использовать только те. которые покажутся вам наиболее полезными. Главным здесь являетесь только вы сами.В формате PDF A4 сохранен издательский макет книги.

Дэниел Джошуа Рубин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная прикладная литература / Дом и досуг
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература