Теперь симулятор может подсчитать, какую долю результатов во всей этой серии симуляций составляет результат, при котором вверху оказывалась грань с определенной цифрой (1, 2 и т. д.). Эти доли переводятся в набор вероятностей, которые приписываются результатам бросков кости. Симулятор может выдать, например, такой результат: «Из 100000 смоделированных бросков кости с начальными условиями, взятыми из видеоклипа, в 3 % случаев выпала единица, в 96 % — четверка, а на остальные цифры (2,3,5,6) пришелся 1 % случаев». Это чрезвычайно полезный прогноз, предсказывающий не только самый вероятный результат, но и то,
Теперь вернемся к вероятности выпадения четверки, которую в отсутствие поддержки от симулятора с его мощной предсказательной способностью мы считаем равной 1/6. Но эта вероятность обусловлена другой причиной. Мы можем бросать кость много раз и записывать результаты. Но очевидной причины для получения в этом опыте вероятности выпадения четверки, равной 1/6, не видно. Однако именно такая вероятность получается вследствие
Симметрии, однако, не вполне достаточно для того, чтобы объяснить разницу между «вашей» вероятностью 1/6 и результатом симулятора — 96 %. Если вы бросаете кость с высоты всего 1 см над столом, очень вероятно, что она упадет вверх той же стороной, которая смотрела вверх, когда кость была в руке в момент броска. Таким образом, для получения вероятности 1/6 требуется не только отсутствие корреляции между определенной стороной кубика и физическими процессами, управляющими его движением, но и достаточная сложность физического процесса, которая бы позволила разрушить любую корреляцию между результатом и видом информации, доступной вам как человеку, бросающему кость. Другими словами, при обычном броске кости имеется зависимость результата броска от начальных условий, но чтобы увидеть и использовать эту зависимость и получить в конечном итоге вероятность, отличную от 1/6, необходимо использовать всю мощь компьютерного симулятора и точные данные наблюдений.
Теперь подведем итоги. При бросании кости и вы, и компьютерный симулятор проходите через очень схожий прогнозирующий процесс. У вас есть модель процесса бросания кубика, а также доступ к некоторой информации о том конкретном броске, результат которого вы пытаетесь предсказать. Для вас эта информация довольно бесполезна, и вы прибегаете к оценке, основанной на симметрии, то есть на одинаковой вероятности выпадения грани с любой цифрой. А вот симулятор, который имеет доступ к полезной информации и возможность использования гораздо более сложной физической модели, может получить более точные прогнозы по распределению вероятностей. И поэтому, например, вы потеряете деньги при игре в кости с симулятором.
Легко себе представить, что симулятор может решить эту задачу лучше или хуже. Если используются лучшая видеокамера, более точная физическая модель стола и падения кости на него, более мощный компьютер и тому подобное, это может повысить точность определения вероятности выпадения, к примеру, четверки при броске правильной кости, доведя ее до значения 99,6 % вместо 96 %. Но столь же легко можно вообразить процесс броска, проходящий не так гладко. Например, если при броске кубик приземляется на ребро, вероятность кубика лечь на одну из прилегающих к этому ребру граней может оказаться примерно 50 на 50, так что потребуется очень много уточняющих расчетов перед тем, как та или иная вероятность начнет преобладать. Если же кость скатывается, к примеру, с длинного неровного холма, то даже симулятору будет трудно получить результат, отличный от стандартной вероятности 1/6, поскольку невозможно учесть все переменные и неопределенности. Но все-таки есть ощущение, что если приложить бездну усилий для улучшения модели и сбора более точных данных, то расчеты симулятора в конце концов приведут к единственному наиболее вероятному ответу на вопрос, что именно произойдет.