Но как бы забавно это ни было, прежде чем разбираться с любым из вышеприведенных вопросов, давайте вернемся к озадачившему всех утверждению Фейнмана о том, что «электрон… движется в любом направлении на любой скорости, как ему нравится, а затем вы складываете амплитуды путей и получаете волновую функцию». Если мы рассмотрим по отдельности частицы (или паломников), то увидим, что имеется много, очень много возможных путей, по которым в принципе
можно через какое-то время попасть из одного места (например, от ворот) в другое место (например, к открытой стороне павильона). Классическая физика рассматривает только один путь из многих и считает его единственно правильным. Квантовая механика разрушает эту концепцию: если частица находится в воротах, мы можем воспользоваться уравнением Шрёдингера, которое позволит нам узнать только вероятность для частицы позже оказаться в каком-то месте у входной стороны павильона. Мы можем считать эту вероятность вероятностью для частицы избрать данный путь, но это не совсем верно: мы видели на примере пары паломников, что для того чтобы произошла интерференция, частица должна каким-то образом пройти одновременно больше чем по одному пути.Фейнман довел эту мысль до логического завершения. Он задался следующим вопросом: если частица должна пройти одновременно по нескольким путям, то не пролетает ли она сразу по всем возможным путям?
В своем анализе он использовал гениальный мысленный эксперимент. Вообразите забор между воротами и павильоном с одними воротами в этом заборе. Тогда какие бы пути к павильону паломники ни избрали, они должны пройти через эти ворота. Если ворот и заборов добавить, то мы установим определенный набор ограничений на пути, по которому могут двигаться паломники. Для того, чтобы рассчитать вероятность прохождения по каждому возможному пути через ворота, можно использовать аппарат квантовой механики — так же, как его использовали для того, чтобы рассчитать вероятность нахождения каждого паломника в определенной точке у открытой стороны павильона. Фейнман обратил внимание вот на что: если рассмотреть бесконечное количество заборов с бесконечным количеством ворот в каждом, то полученные вероятности можно описать двумя способами.Во-первых, вы можете сказать, что они представляют собой своего рода сумму по всем возможным путям
к павильону, которые мог выбрать паломник, поскольку для каждого такого пути существует серия ворот, через которые он должен пройти.В то же самое время забор, полностью состоящий из ворот, — уже вовсе не барьер: его можно считать безбарьерным барьером! Таким образом, вероятности также
описывают просто «свободное» движение паломников к павильону, так же как волновая функция описывает движение частиц по пути, вообще лишенном барьеров.Итак, волновая функция, которая описывает единичную частицу, движущуюся от одного места к другому, математически эквивалентна частице, движущейся по всевозможным путям,
соединяющим первое местоположение со вторым, причем все они абсолютно равно возможны. Как сказал Дайсон, это безумие, но это работает!А еще это приводит к довольно загадочным последствиям. Один ключевой пункт состоит в том, что для того, чтобы этот метод работал, каждому из всех возможных путей необходимо приписать одинаковую амплитуду.
Ни один путь — ни прямой, ни тот, который диктуется классической физикой, ни какой-либо другой — по сути не имеет преимуществ перед другими, и бессмысленно говорить, что эта частица выбрала этот путь, а не другой. Эти пути определяют волновую функцию, которая определяет вероятности, дающие нам (неопределенные) ответы на вопросы, — типа вопроса о том, где мы оказались в конце.И — однако — объекты движутся по прямым траекториям, определяемым соответствующими законами. И когда мы спрашиваем себя, как мы сюда попали, мы вспоминаем конкретный путь, которым пришли.
Но мы сделаны из частиц, которые движутся всеми возможными путями. Как же мы можем выбрать один-единственный путь?
14. Разделение миров
(Эдо, Япония, 1624 год)
В наступающей ночной мгле Муненори внимательно следит за глазами противника, его левым ахилловым сухожилием и мечом. Сосредоточив взгляд на пятимиллиметровом световом блике вблизи рукояти, он определяет угол поворота меча. Малейшее движение лезвия мгновенно выдает себя (блик становится ярче); от лезвия отражаются и попадают в правый глаз Муненори 958 фотонов.