Начнем с блика на мече. Блик состоит из некоторого количества фотонов, но, поскольку это квантовомеханическая система, их количество непременно будет не полностью определенным. То есть квантовое состояние этого блика является суперпозицией
состояний, относящихся к разному числу фотонов из некоторого диапазона. Для примера допустим, что существуют только два состояния — с 957 и 959 фотонами, — и назовем эти состояния [957] и [959]. Таким образом, квантовое состояние блика будет суперпозицией этих двух состояний. Если мы сделаем размер шрифта пропорциональным «амплитуде» состояний (или их длине, если мы представим их в виде стрелок), то квантовое состояние блика после того, как он отразится от меча, можно записать в виде[Состояние блика] = [957] + [959].
То, что шрифт у состояния [957] немного крупнее, означает, что если бы кто-нибудь, используя некий сложнейший прибор, мгновенно измерил число фотонов, он бы обнаружил, что вероятность получить 957 фотонов в блике составляет 6о %, а 959-40 %.
Теперь рассмотрим единичную клетку палочки сетчатки — ту, в которую может попасть один из фотонов. Она тоже может находиться во множестве возможных состояний, но мы — опять для простоты — сведем их к двум: «активированное» состояние [act] и
«неактивированное» состояние [nact]. До того как фотоны попадут в глаз, состояние палочки представляет собой суперпозицию двух состояний, при этом состояние [act] обладало очень малой амплитудой, что указывает на то, что палочка в основном не активна. Таким образом, это ее состояние можно изобразить следующим образом:[Состояние палочки] = [nact] + [act].
До того, как фотоны попадут в глаз, состояние палочки и состояния фотонов в основном никак не связаны, и мы можем рассматривать их независимо. Квантовая механика дает метод описания таких независимых состояний: их просто нужно умножить друг на друга. Таким образом, получаем:
[Совместное состояние палочки и блика] = ([957] + [959]) × ([nact] + [act]).
Поскольку каждое из состояний — и состояние блика, и состояние палочки — содержит по две возможности, перемножение их приводит к комбинированному состоянию, содержащему все четыре комбинации активированной и неактивированной палочки и двух состояний фотонов — 959 или 957 фотонов, что можно записать в следующем виде (когда состояния стоят рядом, подразумевается знак умножения):
[Совместное состояние палочки и блика] = [957][nact] + [959][nact] + [957][act] + [ 959][act].
Хотя кажется, что палочка и блик — связанные системы, это иллюзия: на самом деле совместное состояние палочки и блика — это состояние двух независимых систем, поскольку его можно обратно собрать в произведение. Эти системы останутся независимыми до тех пор, пока не провзаимодействуют.
Но:
когда фотоны попадают в глаз и проходят через роговицу, минуя все соединения зрительных нервов, мы уже не можем рассматривать их в отдельности от палочек — из-за взаимодействия возникает соотношение между фотонами, разными слоями роговицы, которые они проходят, и клеткой палочки. Это взаимодействие из-за разветвленной структуры клеток палочек имеет специфический вид, который обеспечивает корреляцию состояний клетки палочки и фотонов в блике. Это означает, что взаимодействие меняет состояние таким образом, что амплитуда состояний, включающих активированную палочку, становится больше амплитуд состояний с неактивированной палочкой. Кроме того, дополнительно увеличивается амплитуда состояния с 959 фотонами и активированной палочкой по сравнению с амплитудой состояния с 957 фотонами и активированной палочкой. Таким образом, состояние после взаимодействия могло бы выглядеть следующим образом:[Состояние палочки + блик после взаимодействия] = [957][nact] + [959][nact] + [957][act] + [959][act].
Грубо говоря, фотоны активировали палочку (члены с множителем [act]
становятся больше, чем до взаимодействия), и к тому же 959 фотонов активировали ее больше, чем 957 фотонов. Но у нас все еще остается суперпозиция четырех состояний! В действительности взаимодействие в квантовой механике может изменить амплитуды соответствующих состояний, но оно не изменяет состояния и не может сделать так, чтобы какие-то члены в суперпозиции исчезли полностью. Палочка «увидела» фотоны в том смысле, что фотоны и палочка провзаимодействовали, но у системы по-прежнему имеются все четыре возможности — ведь еще ничего наверняка не «случилось».