Мы знаем, что вселенная расширяется,
поскольку наблюдения позволяют приблизительно измерить расстояние до таких небесных объектов, как галактики и взрывающиеся сверхновые. Кроме того, используя эффект Доплера, можно очень точно выяснить, как быстро они движутся по направлению к нам или от нас. Эффект Доплера — сдвиг частоты электромагнитной волны, испускаемой движущимся от нас или к нам объектом, соответственно, в красную или фиолетовую область спектра. Мы обнаруживаем, во-первых, что все галактики, находящиеся на доступном для наблюдения расстоянии, движутся в направлении от нас. Во-вторых, мы видим, что чем дальше от нас данная галактика, тем больше скорость этого движения. Закон, описывающий расширение вселенной, называют законом Хаббла (по имени открывшего его космолога Эдвина Хаббла). Вселенная ведет себя именно так, как должно вести себя большое множество галактик, которое одновременно и однородно расширяется: каждая из галактик «видит», что другие галактики удаляются от нее со скоростью, определяемой законом Хаббла[93].Мы знаем, что вселенная эволюционирует,
поскольку, глядя на достаточно удаленные объекты, обнаруживаем, что когда-то давно вселенная расширялась не с такой скоростью. Мы также видим тому свидетельства, такие как относительное количество водорода, гелия и других легких элементов во вселенной, оставшееся от той эпохи, когда вселенная была гораздо горячее и плотнее, чем сейчас.Если посмотреть на крупномасштабное распределение галактик, карту которых мы составили, то видно, что вселенная относительно однородна,
как и заполняющее ее реликтовое излучение (космическое сверхвысокочастотное фоновое излучение). Структура распределения галактик может быть очень сложной, но на масштабах сотен миллионов световых лет и больше это распределение выглядит достаточно однородным. Реликтовое излучение — свет, который последним контактировал с материей в ту эпоху, когда вселенная была горячей и достаточно плотной для того, чтобы водород был ионизирован. Когда космическая среда остыла настолько, что могли образоваться атомы водорода, она стала прозрачной для света. Всю последующую космическую историю этот свет распространялся (с одновременным красным смещением) и дошел до нас в виде идущих со всех сторон волн в миллиметровом диапазоне. Интенсивность наблюдаемого реликтового излучения практически одинакова во всех направлениях, а поскольку эта интенсивность связана с плотностью материи в той космической области, откуда пришло реликтовое излучение, его однородность указывает на то, что на очень ранних стадиях сама вселенная была исключительно однородна.На основе точных астрономических измерений космологам фактически удалось довольно детально воссоздать историю вселенной, образовавшейся в результате большого взрыва, причем основные величины совпали на удивление хорошо. Если говорить кратко, получилось следующее. С большой долей уверенности мы можем говорить, что было время, около 13,8 миллиарда лет назад, когда наблюдаемая вселенная представляла собой бесструктурную, очень горячую плазму, состоящую почти целиком из излучения со следами вещества. Вселенная была однородна за исключением очень слабых флуктуаций космической плотности и расширялась с такой скоростью, что за последующие 12 минут ее размер увеличился в два раза. Прозрачной для света вселенная стала на 370000 лет позже, когда, остывая, превратилась из плазмы в газ. В позднейшие эпохи развития вселенной гравитационные силы, стремящиеся собрать и сжать космическую материю, привели к тому, что крошечные неоднородности плотности стали более выраженными; постепенно появились крупные скопления материи — возникли галактики наподобие нашего Млечного Пути. Примерно в то же время, когда образовалась наша галактика, материя в нашей вселенной, разреженная благодаря космическому расширению, уступает главенство таинственному темному веществу, разредить которое невозможно. Космологи называют его темной энергией.