Читаем Космос для не космонавтов полностью

Открытие эффекта Мейснера вполне можно назвать фундаментальным, ведь, помимо прочего, оно позволило нам понять, что не все сверхпроводники одинаковы. Помимо немногочисленных чистых металлов, сверхпроводимость возникает и у сплавов. Если у чистых металлов эффект Мейснера проявляется на 100 % (сверхпроводники первого рода), то у сплавов – частично, так как они неоднородны (сверхпроводники второго рода) и магнитное поле в них выталкивается не полностью, заполняя пространство вдоль идущих через проводник сверхтоков. Тут-то и началось хоть какое-то практическое применение сверхпроводников в виде магнитов.

Итак, первой наиболее логичной целью на этом пути применения сверхпроводников специалисты увидели создание сверхпроводящих магнитов, для замены разработанных ещё в XIX веке электромагнитов, основанных на использовании обычных металлов, ведь все данные указывали на то, что сверхпроводящий магнит позволял создавать гораздо более устойчивые и мощные поля при более эффективном использовании электричества.

В 1962 году были разработаны первые сверхпроводящие провода из ниобия и титана, и в том же году специалистами General Electric был создан первый крупный сверхпроводящий магнит, мощность генерируемых полей которого достигала 10 Тл.

Научно-технический успех был очевиден, а вот экономика «хромала». Первый сверхпроводящий электромагнит оказался бесповоротно убыточным. Во-первых, стоимость создания возросла с предусмотренных контрактом с Bell Laboratories 75 тыс. долларов до 200 тыс. Тем не менее это нисколько не помешало молодым инновационным компаниям вступить в гонку за индуктивностью полей с 1970-х годов.

Основой стало понимание того, насколько сильное поле может создать сверхпроводящий магнит, ведь с увеличением этого значения ускорялась и потеря сверхпроводимости. В то время, собственно, одна из тех самых молодых и инновационных компаний Toshiba совместно с Университетом Тохоку создала мощнейший в мире на тот момент сверхпроводящий магнит, который генерировал поле с индукцией 12 Тл и применялся для различных работ по материаловедению.

Правда, это всё ещё было далеко от обычных электромагнитов, которые к концу 1970-х без особых проблем генерировали поля с индукцией до 23,4 Тл.

Ближе к середине 1980-х годов мощности сверхпроводящих магнитов, наконец, превысили показатели электромагнитов. В 1986 году та же Toshiba, поместив обычный резистивный электромагнит внутрь сверхпроводящего (создав, по сути, гибридный), добилась индукции величиной 31 Тл.

Само собой, встал вопрос коммерциализации, и большинство компаний ринулись в медицину. Так и появилась магнитно-резонансная томография, использующая электромагнитные поля сверхпроводников, которая выдаёт намного более чёткую диагностику, чем даже не так давно появившаяся технология компьютерной томографии и тем более рентгенография.

К чему всё идёт?

Провода на высокотемпературных сверхпроводниках

Как только учёные достаточно хорошо описали явление сверпроводимости, инженеры и бизнесмены начали думать о том, как на его основе создать технологию передачи тока на большие расстояния, ведь обыкновенные высоковольтные линии мало того что занимают слишком много места, которое не особо-то пригодно для какой-либо иной деятельности, так ещё и приводят к потере почти 10 % передаваемой энергии, а это всё деньги.

Понятное дело, что сверхпроводники первого рода (чистые металлы) не подходили для того, чтобы делать из них провода, по целому ряду причин, а когда появились сверхпроводники второго рода, встал вопрос об их охлаждении, для которого требовался дорогой гелий, да и вообще вся эта система.

Только в 1986 году была открыта так называемая высокотемпературная сверхпроводимость, но и она началась со сверхпроводников, которые работали при температуре около –243,15 °C, хоть это и позволило использовать для охлаждения более дешёвый азот. Даже если бы было принято решение попробовать внедрить такую технологию, потребовалось бы решить вопрос о том, как поддерживать высокопроводящее состояние, то есть низкую (хоть и вроде как высокую) температуру, на очень больших отрезках.

В целом эти разработки продолжаются сегодня в России, Китае, Японии, Южной Корее, Европе и США, но по-прежнему всё огранивается проектами по созданию сверхпроводящих кабелей длиной 1–10 км.

Высокоскоростной транспорт

Тут практическая польза оказалась куда более заметной. Ещё в начале 1970-х годов был создан первый прототип поезда на магнитной подушке (германский Transrapid 02), а в 1984 году первый коммерческий маглев (от словосочетания «магнитная левитация») начал курсировать между терминалом аэропорта и железнодорожной станцией города Бирмингема (проработал до 1995 года).

Перейти на страницу:

Все книги серии История и наука Рунета. Подарочное издание

Популярная астрофизика. Философия космоса и пятое измерение
Популярная астрофизика. Философия космоса и пятое измерение

Александр Дементьев – журналист (работал в таких изданиях, как РБК, «Ведомости», Лента.ру), закончил МПГУ (бывш. МГПИ им. Ленина) по специальности общая и экспериментальная физика. Автор самого крупного научно-популярного канала «Популярная наука» на «Яндекс. Дзен».Перед вами – уникальная книга, которая даст возможность по-новому взглянуть на космос. Человечество стоит на пороге больших открытий за пределами нашей планеты. И они кардинально изменят жизнь людей!Из книги вы узнаете:• Что ждет Землю и Солнце в будущем. И почему человеку стоит задуматься о путешествии к другим звездам уже сейчас.• Что такое темная материя и какую выгоду принесет человечеству ее открытие.• Что такое черные дыры и как люди смогут использовать их в будущем.• Как могут выглядеть другие формы жизни.• Какие планеты человек колонизирует первыми. Эти и многие другие вопросы рассмотрены с точки зрения современных научных данных.Книга рассчитана на широкий круг читателей.

Александр Алексеевич Дементьев

Научная литература / Учебная и научная литература / Образование и наука
Космос для не космонавтов
Космос для не космонавтов

На вопрос «Что такое космос?» обычно отвечают, что это «пустота» и «ничто». Но знаете ли вы, что космонавтика влияет на изучение генетики, создание новейших технологий в медицине, инженерные решения, применяемые в обычной жизни, развитие робототехники?Стремление вырваться за пределы планеты было свойственно людям еще в древности, а в наше время оно только усилилось. В книге «Космос для не космонавтов» подробно, увлекательно и доступно рассказывается, например, что такое вселенная, почему людям так интересно её изучать, как внеземные работы способствуют развитию жизни на самой Земле и отчего в космосе развивается клаустрофобия. Космос – это такая загадка, которую можно разгадывать бесконечно.И поможет вам в этом Денис Юшин – специалист ракетно-космической отрасли, автор крупного канала «Since&Future» на «ЯндексДзене».В формате PDF A4 сохранен издательский макет книги.

Денис Игоревич Юшин

Астрономия и Космос / Учебная и научная литература / Образование и наука

Похожие книги

Двенадцатый космонавт
Двенадцатый космонавт

Георгий Тимофеевич Береговой… Человек, знакомый миллионам людей и пользовавшийся большим и заслуженным авторитетом. Летчик-фронтовик, совершивший 186 боевых вылетов, награжденный многими орденами и медалями, Герой Советского Союза, «мастер штурмовых атак». Заслуженный летчик-испытатель СССР, давший путевку в небо многим десяткам крылатых машин, один из лучший испытателей Советского Союза периода 50-х – 60-х годов прошлого века, знаменитый «король штопора». Летчик-космонавт СССР, получивший звание дважды Герой Советского Союза за испытательный полет на космическом корабле «Союз-3» в октябре 1968 года, – за полет, который фактически открыл дорогу в космос целому поколению космических кораблей «Союз», «СоюзТ», «СоюзТМ», орбитальным станциям «Салют» и «Алмаз», орбитальному комплексу «Мир».  

Сергей Чебаненко

Публицистика / Астрономия и Космос / История