Время от времени сообщения о достижении сверхпроводимости при комнатной температуре появляются, но это, как правило, преувеличение СМИ. К примеру, физики из университета Рочестера (США, штат Нью-Йорк) в статье «Сверхпроводимость при комнатной температуре в углеродистом гидриде серы», опубликованной в Nature, сообщили о достижении сверхпроводимости при необычайно высокой температуре +15 °C (Elliot Snider, 2020). Есть нюанс: для этого потребовалось довольно высокое давление.
Учёные на протяжении многих лет шаг за шагом подбирались к этому достижению. Например, в 2015 году был поставлен рекорд сверхпроводимости при –70 °C (A. P. Drozdov M. I., 2015), а в 2019 году физики добились этого состояния при –23 °C – не самый морозный зимний день в России (A. P. Drozdov P. P., 2019). И вот теперь сверхпроводимость достигнута при комнатной температуре. Что удивительно, но компонентами для сверхпроводника послужили самые простые и дешевые вещества: сера и углерод в виде очень мелкого порошка, а также газообразный водород.
Смешав всё это, состав поместили между алмазными наковальнями, подвергли воздействию давления 2,6 млн атмосфер, а дополнительно благодаря прозрачности алмаза несколько часов эту смесь облучали лазером, чтобы запустить в нём химические реакции. В результате был получен принципиально новый материал (в объёме всего лишь триллионных долей литра), который оставался сверхпроводящим при 15 °C.
По сути, сбылась мечта физиков! А вот у инженеров работа только началась, ведь показана лишь принципиальная возможность сверхпроводимости при комнатной температуре, что уже просто потрясающе, но до внедрения технологии в повседневный быт ещё далеко. Тем не менее, изучив физические механизмы, лежащие в основе «комнатной» сверхпроводимости, учёные и инженеры однажды смогут реализовать её и при нормальном давлении. Это станет началом появления очередных технологий из фантастических романов в повседневной жизни, а спустя ещё десяток-другой лет современники будут с совершенно скучающим видом садиться в левитирующий космический поезд, чтобы отправиться на работу на станцию термоядерного синтеза на орбите высотой в 20 000 км над Землёй.
Зачем создавать термоядерный реактор, если у нас уже есть один работающий?
Илон Маск как-то написал в своём аккаунте в социальной сети, логотипом которой является птичка: «Термоядерная энергия не нужна». Позже он объяснил, что у нас есть термоядерный реактор, стабильно работающий уже более 4,5 млрд лет, – Солнце.
Идея о том, чтобы получать энергию с помощью солнечной электростанции, размещённой в космосе, старше даже космической программы. Вообще, согласитесь, довольно интересно наблюдать за тем, как описанные фантастами технологии постепенно становятся обыденной реальностью.
Проектов орбитальных солнечных электростанций не то чтобы много, но и не мало. На сегодня лидерами в разработке этих технологий являются США. Не отстаёт Китай, есть подобные проекты и в России.
Итак, наиболее активно над подобными технологиями в США работали в 1970-х годах. Тогда основной идеей было создание на орбите солнечной электростанции, которая могла бы наиболее эффективно вырабатывать энергию и передавать её на Землю.
Самая успешная демонстрация (Dickinson, 1975) состоялась уже в 1975 году: чуть более 30 кВт энергии было передано на расстояние более 1,5 км. Эффективность передачи составила 82 %, что очень неплохо. Проблема была в масштабах оборудования. Генерировала пучок радиоволн параболическая зеркальная антенна диаметром 26 м. Принимающая, площадью 24 м2
, была установлена на специальной башне высотой 30,5 м.Таким образом, для регулярной передачи довольно большого количества энергии на расстояние в сотни километров на тот момент требовались бы гораздо бóльшие антенны. Но технологии не стояли на месте, поэтому американские специалисты (военные, как правило) возобновили работы по данному направлению.
К примеру, в 2018 году ВВС США заключили контракт с Northrop Grumman на разработку технологий для создания спутника, который мог бы дистанционно снабжать энергией удаленные военные базы. В 2021 году в рамках этого проекта был продемонстрирован прототип солнечной панели с интегрированной передающей антенной.
У ВМС США есть собственный проект по разработке технологий передачи энергии по воздуху. Научная лаборатория, занимающаяся им, рассказала, что с помощью обычной зеркальной антенны диаметром в несколько метров, генерирующей узкий пучок электромагнитного излучения с частотой 10 ГГц, им удалось передать энергию на расстояние 1 км с пиковой мощностью в 1,6 кВт. Принимала радиоволны квадратная антенна, состоящая из множества приёмников, подсоединенных к выпрямляющим диодам для генерации постоянного тока.
Во время другого теста инженерам удалось добиться меньшей пиковой мощности, но более стабильной передачи. Отмечено, что данная система работает в допустимом мировыми регуляторами диапазоне мощности, признанном безопасным для людей и животных.