Читаем Красота в квадрате полностью

Даррелл показал на висевшую на стене рамку, в которую была помещена первая страница газеты со статьей о вынесении приговора Уэсли Родсу — местному финансовому консультанту, укравшему у инвесторов миллионы долларов, чтобы покупать на эти деньги классические модели автомобилей. «Закон Бенфорда помог нам привлечь его к ответственности», — сообщил Даррелл. Отчеты, которые Родс отправлял инвесторам, не прошли проверку на соответствие закону первой цифры, а это означало, что что-то с ними не так. Проанализировав отчеты более внимательно, Даррелл обнаружил, что Родс сфальсифицировал данные. Теперь Даррелл характеризует закон Бенфорда так: «Это ДНК количественного исследования, исходное предположение о том, как работают цифры. И, как я уже неоднократно объяснял в суде, хорошо то, что здесь речь идет о науке. Открытие Бенфорда — не теория. Это закон».

Метод анализа чисел на предмет их соответствия закону Бенфорда все чаще используется для выявления манипуляций с данными, причем не только в контексте финансовых махинаций, но и во всех тех случаях, к которым этот закон применим. В 2006 году Скотт де Марчи и Джеймс Гамильтон из Университета Дьюка написали, что предоставленные промышленными предприятиями сведения об уровне выброса свинца и азотной кислоты не удовлетворяют закону Бенфорда, а это говорит о вероятности искажения информации [5]. На основании закона Бенфорда политолог Мичиганского университета Уолтер Мибейн заявил о возможной фальсификации результатов президентских выборов в Иране. Мибейн проанализировал все протоколы голосования и обнаружил существенные расхождения в количестве голосов за Махмуда Ахмадинежада с законом Бенфорда, тогда как в результатах его соперника, сторонника реформ Мир-Хосейна Мусави, никаких отклонений от этого закона не наблюдалось. «Самое простое объяснение, — писал Мибейн, — состоит в том, что в результаты Ахмадинежада были искусственным образом включены дополнительные голоса, тогда как результаты Мусави остались нетронутыми». Ученые используют закон Бенфорда и в качестве инструмента диагностики. Так, во время землетрясений верхние и нижние значения показаний сейсмографа подчиняются данному закону. Малколм Сэмбридж из Австралийского национального университета проанализировал две разные сейсмограммы, на которых было зафиксировано землетрясение в Индонезии в 2004 году, — одна была записана в Перу, а другая в Австралии. Данные, отображенные на первой сейсмограмме, полностью соответствовали закону Бенфорда, тогда как на второй имели место небольшие отклонения. Сэмбридж объяснил это тем, что в районе Канберры могло произойти незначительное сейсмическое возмущение. Так проверка данных на соответствие закону первой цифры позволила выявить землетрясение, которое осталось незамеченным.

Цифра 1 встречается чаще цифры 2 не только на первой, но и на второй, третьей, четвертой и фактически любой позиции в записи числа. На представленном ниже рисунке продемонстрирована частотность вторых цифр в процентном выражении (среди которых есть теперь и цифра 0). Различия между этими показателями не столь ощутимы, как в случае первых цифр, но их все же можно использовать в целях диагностики, скажем в процессе анализа финансовых данных и результатов выборов. По мере продвижения к следующим позициям данные о частоте появления цифр стремятся к одному значению. Следовательно, закон Бенфорда касается не только первых цифр. В мире действительно гораздо больше единиц!

В суде Доррелла часто просят обосновать закон Бенфорда. В таких случаях Даррелл становится перед лекционной доской и начинает считать от единицы и далее, записывая названные цифры. При этом он чувствует себя школьным учителем, проводящим урок математики. «Это просто выводит из себя судью и адвоката», — иронизирует он.

Мы можем сделать то же самое. Вот числа от 1 до 20:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Больше половины этих чисел начинаются с цифры 1, поскольку от 11 до 19 все числа начинаются с единицы. Продолжаем считать. Где бы мы ни остановились, чисел с первой цифрой 1 будет не меньше, чем чисел с первой цифрой 2, поскольку для того, чтобы добраться до второго десятка, второй сотни или второй тысячи, необходимо назвать все числа первого десятка, первой сотни и первой тысячи. Точно так же чисел с первой цифрой 2 будет не меньше, чем чисел с первой цифрой 3 и т. д., вплоть до чисел с первой цифрой 9. Такое обоснование помогает понять закон Бенфорда на интуитивном уровне, и его вполне достаточно для суда как государственного органа, а вот для суда математики требуется более строгое доказательство.

Перейти на страницу:

Похожие книги