Читаем Краткая история науки полностью

До сих пор используются две шкалы измерения температуры, одну предложил немецкий физик Даниель Габриель Фаренгейт (1686–1736), который использовал термометры, содержащие и спирт, и ртуть. По его шкале вода замерзает при 32 градусах и нормальная температура тела определяется в 96. Андерс Цельсий (1701-44) придумал другую шкалу, используя как опорные точки замерзание и кипение воды, первую обозначил как ноль и вторую – в 100 градусов. Его термометры показывали температуру между этими двумя крайними значениями.

Обе шкалы в ходу в разных частях мира, их используют и для того, чтобы испечь пирог, и для того, чтобы поныть по поводу погоды.

Шотландский физик Уильям Томпсон (1824–1907) предложил другую шкалу. Этот ученый в особенности интересовался тем, как тепло и другие формы энергии проявляют себя в природе. Томпсон занимал должность профессора в университете Глазго, и позже получил титул лорда Кельвина, поэтому его шкала известна как шкала Кельвина.

В процессе ее разработки он использовал строгие научные принципы и точные инструменты для наблюдений. По сравнению со шкалой Кельвина Цельсий и Фаренгейт выглядят грубыми, приблизительными.

Опорная точка для шкалы Кельвина – «тройная точка воды».

Она случается, когда три состояния воды – лед (твердое), вода (жидкость) и водяной пар (газ) находятся в термодинамическом равновесии. Последнее может возникать в экспериментальных условиях, когда вещество изолировано от окружающего мира таким образом, что температура и давление фиксированы. Поэтому нет изменений в состоянии вещества и никакое количество энергии не покидает систему и не входит в нее. Тройная точка воды достигается, когда твердое вещество, жидкость и газ находятся в идеальном балансе. Как только температура или давление меняется, баланс теряется.

По шкалам Цельсия и Фаренгейта температура уходит в минус, когда становится достаточно холодно. Вы могли слышать, как в прогнозе погоды говорят «минус два или три градуса» или даже больше. Но на шкале Кельвина нет отрицательных значений, вода по ней замерзает при 273,16 градуса (сравните с 0 Цельсия или 32 Фаренгейта), и при нуле наступает настоящий холод. Ноль здесь обозначает настоящее ничто, он именуется «абсолютным нулем», и при этой невероятно низкой температуре все движение прекращается, энергия замирает.

И точно так же как невозможно создать механизм с идеальной эффективностью, так же невозможно достичь и абсолютного нуля.

Кельвин и другие помогли объяснить научные и практические принципы функционирования двигателей разного рода. В конце девятнадцатого века три открытия, изложенных в этой главе, были названы тремя законами термодинамики: сохранение энергии, закон энтропии и абсолютная неподвижность атомов при «абсолютном нуле». Эти законы помогают нам понимать важные вещи относительно силы, энергии и работы.

Тогдашний мир принялся активно использовать вновь обретенную мощь: задвигались машины на фабриках, задымили трубы пароходов и паровозов, а концу жизни Кельвина появились автомобили. Паровозы и пароходы использовали тепло сжигаемого в топках угля, чтобы получать пар, который и оживлял машины, но автомобили оказались основаны на ином принципе, на двигателе внутреннего сгорания.

Такой двигатель требует жидкого, испаряющегося топлива, именуемого бензином, изобретенного в конце девятнадцатого века. И бензин стал одним из наиболее важных источников энергии для века двадцатого, и сейчас, в начале двадцать первого, он остается одним из самых ценных ресурсов для всего мира.

Глава 29

Таблица элементов


Всякий раз, смешивая продукты, чтобы испечь что-то, мы используем химические реакции. Очищая чайник от накипи, мы тоже пускаем в ход достижения науки химии. Пластиковые бутылки для воды, разноцветная одежда, которую мы носим, стали возможными благодаря химическим знаниям, накопленным за сотни лет.

Химия превратилась в современную науку в девятнадцатом веке.

Давайте коротко вспомним: в начале того столетия химики приняли идею Дальтона по поводу атома (глава 21). Затем они резко продвинулись вперед, создав особый язык, который можно было использовать в любой стране мира. Появилась система обозначений для элементов, например, H2 для двух атомов водорода. Все согласились, что атом является мельчайшей частицей материи, что слово «элемент» будет использоваться только для субстанции, состоящей из атомов одного вида (углерод, например), в «соединении» же будет содержаться два или большее число элементов, связанных химическим путем.

Можно разложить соединение на элементы (аммиак разделить на азот и водород), но когда у вас в руках отдельные элементы, их уже нельзя разбирать на «части» дальше.

Хотя атомы оказались вовсе не крохотными твердыми шариками, о которых думал Дальтон, было невероятно трудно определить, чем в точности они являются. Отложив эту задачу, химики начали заниматься тем, как ведут себя атомы, помещенные в те или иные соединения.

Перейти на страницу:

Все книги серии Краткая история

Похожие книги

Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука
ДНК и её человек. Краткая история ДНК-идентификации
ДНК и её человек. Краткая история ДНК-идентификации

Книга Елены Клещенко адресована всем, кого интересует практическое применение достижений генетики в таких областях, как криминалистика, генеалогия, история. Речь о возможности идентификации человека по его генетическому материалу. Автор рассказывает о методах исследования ДНК и о тех, кто стоял у их истоков: cэре Алеке Джеффрисе, придумавшем ДНК-дактилоскопию; эксцентричном Кэри Муллисе, сумевшем размножить до заметных количеств одиночную молекулу ДНК, и других героях «научных детективов».Детективную линию продолжает рассказ о поиске преступников с помощью анализа ДНК – от Джека-потрошителя до современных маньяков и террористов. Не менее увлекательны исторические расследования: кем был Рюрик – славянином или скандинавом, много ли потомков оставил Чингисхан, приходился ли герцог Монмут сыном королю Англии. Почему специалисты уверены в точности идентификации останков Николая II и его семьи (и отчего сомневаются неспециалисты)? В заключении читатель узнает, почему нельзя изобрести биологическое оружие против определенной этнической группы, можно ли реконструировать внешность по ДНК и опасно ли выкладывать свой геном в интернет.

Елена Владимировна Клещенко

Научная литература