Читаем Краткая история науки полностью

Подобно благородному дворянину, не желающему иметь место с теми, кого он считает ниже, эти газы держатся в стороне от химических реакций. Основные элементы этой группы были открыты в 1890-х, и Менделеев поначалу не принял это открытие. Вскоре, однако, он понял, что гелий, неон и аргон были предсказаны его собственной таблицей.

В 1870–80-х химики, используя таблицу, открыли некоторое количество элементов, существование которых предвидел русский ученый. Многие коллеги поначалу отвергли его «безумные измышления» по поводу того, что элементы, впоследствии названные бериллием и галлием, должны существовать. Но по мере того как начали заполняться бреши в таблице, мнение понемногу изменилось, ценность таблицы Менделеева была осознана в полной мере. Она помогала открывать новые элементы и объясняла, на что будет похож каждый из них и как он станет вступать в реакцию с другими.

То, что началось как попытка Менделеева внести порядок в систему элементов, стало настоящим ключом к секретам природы. Сейчас его таблица висит в классах и химических лабораториях по всему миру.

Большую часть девятнадцатого века химики активно занимались проблемой химического состава: какие атомы и радикалы входят в те или иные соединения. Инициатор первого химического конгресса Август Кекуле рискнул заглянуть дальше, он попытался затронуть вопрос химической структуры.

Сегодняшняя химия и молекулярная биология опираются на знания ученых о том, как атомы и молекулы расположены внутри вещества: какие они принимают формы и какие места занимают. Без подобной информации невозможно разрабатывать новые лекарства, и Кекуле стал первопроходцем в этой области.

Он рассказал о сне, в котором увидел цепочку из атомов углерода, свернутую в кольцо подобно змее, кусающей свой хвост. Это озарение привело к одному из величайших открытий, к обнаружению структуры бензола, соединения из водорода и углерода, имеющего как раз кольцевую структуру; радикалы или атомы могут присоединяться к разным местам этой структуры.

Это стало большим шагом вперед в органической химии.

Сны – это одно, тяжелая и упорная работа – совсем другое, и Кекуле провел за экспериментами в своей лаборатории много часов. Он придал смысл органической химии – химии соединений углерода – и научил весь химический мир распределять эти соединения по группам.

Кекуле был изумлен тем, как гибко ведет себя углерод, соединяясь с другими химикалиями. Газ метан, широко использовавшийся для освещения и отопления, имеет формулу CH4 – один атом углерода присоединен к четырем атомам водорода. Два атома кислорода могут вступать в комбинацию с тем же углеродом, образуя CO2, диоксид углерода. Но эти способы соединения оказались вовсе не единственными, поскольку те же кислород и углерод могут соединяться поодиночке, образуя CO, смертоносный газ оксид углерода.

Химики в конечном счете придумали слово, чтобы описывать шаблоны объединения атомов: валентность. И ее можно определить по месту, которое занимает элемент в периодической таблице Менделеева. Тогда было много размышлений, почему все обстоит именно таким образом, но проблема оказалась решена много позже, когда физики разобрались во внутренней структуре атомов и узнали, что такое электрон.

Электрон связал атом химиков с тем атомом, который изучают физики, и в следующей главе мы узнаем эту историю.

Глава 30

Внутрь атома


Атом очень нравился химикам, именно он вступал в химические реакции, он занимал определенное место в соединениях, он обладал свойствами, которые можно грубо предсказать по его месту в периодической таблице. Каждый атом обязательно был либо отрицательным, либо положительным в отношениях с другими атомами и имел определенный шаблон для объединения с ними, именуемый валентностью.

Химики также весьма ценили разницу между единичным атомом и группировкой атомов, молекулой. Они понимали, что хотя большая часть элементов предпочитала существовать в виде единичных атомов – водород и кислород, например, – в природе имеется и молекулярная форма (Н2 или О2).

Относительные атомные массы тоже были определены точно и аккуратно, начиная с 1 у водорода.

Но совсем ничего не давало малейшего намека на внутреннюю структуру атома. Химики понимали, что могут манипулировать атомами в своих лабораториях, но не в состоянии сказать, чем же на самом деле являются эти единицы материи.

Большую часть девятнадцатого века физики больше интересовались другими вещами: как трансформируется энергия, как можно измерить электричество и магнетизм, какова природа тепла и почему газы ведут себя определенным образом. Физическая теория газов – именуемая кинетической теорией – также включала размышления об атомах и молекулах. Но физики подобно химикам соглашались, что хотя атомная теория очень полезна, чтобы объяснять то, что они видят и измеряют, но понять природу атомов они не в состоянии.

Перейти на страницу:

Все книги серии Краткая история

Похожие книги

Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука
ДНК и её человек. Краткая история ДНК-идентификации
ДНК и её человек. Краткая история ДНК-идентификации

Книга Елены Клещенко адресована всем, кого интересует практическое применение достижений генетики в таких областях, как криминалистика, генеалогия, история. Речь о возможности идентификации человека по его генетическому материалу. Автор рассказывает о методах исследования ДНК и о тех, кто стоял у их истоков: cэре Алеке Джеффрисе, придумавшем ДНК-дактилоскопию; эксцентричном Кэри Муллисе, сумевшем размножить до заметных количеств одиночную молекулу ДНК, и других героях «научных детективов».Детективную линию продолжает рассказ о поиске преступников с помощью анализа ДНК – от Джека-потрошителя до современных маньяков и террористов. Не менее увлекательны исторические расследования: кем был Рюрик – славянином или скандинавом, много ли потомков оставил Чингисхан, приходился ли герцог Монмут сыном королю Англии. Почему специалисты уверены в точности идентификации останков Николая II и его семьи (и отчего сомневаются неспециалисты)? В заключении читатель узнает, почему нельзя изобрести биологическое оружие против определенной этнической группы, можно ли реконструировать внешность по ДНК и опасно ли выкладывать свой геном в интернет.

Елена Владимировна Клещенко

Научная литература