При работе с Tetrahymena было сделано невероятно много важных биологических открытий, включая идентификацию первого двигательного белка (аналога примитивного мышечного белка) и обнаружение лизосом и пероксисом – «мусорных корзин» клетки. Более того, с тем же образцом Tetrahymena, который исследовали Чек и Олтмен, работала еще одна исследовательская группа, удостоенная Нобелевской премии совсем за другие исследования. Участник этой группы, скромный канадец по имени Джек Шостак, стал одним из ведущих специалистов по проблеме происхождения жизни и самым известным из современных ученых, активно изучающих модель «мир РНК».
Отец Шостака был пилотом Королевских ВВС Канады, и в детстве будущий ученый внимательно следил за космическими экспедициями кораблей «Аполлон». Однако сильнее, чем сами полеты, его занимали эксперименты, выполненные астронавтами на Луне. Больше всего его интересовала биология. В школе его считали вундеркиндом. Он поступил в самый престижный университет Канады, Университет Макгилла, когда ему было только 15 лет.
В 1982 г., в возрасте 27 лет, Шостак стал профессором химии на Медицинском факультете Гарварда и впервые занялся проблемой репарации ДНК в дрожжах Saccharomyces cerevisiae – модельном эукариотическом организме, интересовавшем многих ученых со времен Пастера. Однажды он присутствовал на лекции молекулярного биолога из Калифорнийского университета в Беркли Элизабет Блэкбёрн, посвященной генетике Tetrahymena. Шостак понял, что может использовать результаты Блэкбёрн в своей собственной работе, посвященной решению одной из сложных проблем биологии – эукариотической клетки. Известно, что ферменты, копирующие ДНК, никогда не доходят до концов хромосом, и поэтому считалось, что в каждом цикле клеточного деления какая-то часть хромосом не должна копироваться. Тот факт, что это не всегда так, ставил ученых в тупик.
Для того чтобы разобраться в происходящем, Шостак и Блэкбёрн вместе с молекулярным биологом Кэрол Грейдер поставили серию экспериментов. Используя гибридные хромосомы Saccharomyces и Tetrahymena, они показали, что короткие участки ДНК, названные теломерами (от
Завершив работу с теломерами, Шостак стал искать новую тему для исследований. Еще на заре научной карьеры он собирался заняться тремя важнейшими, по его мнению, проблемами в биологии: происхождением Вселенной, происхождением сознания и происхождением жизни. Довольно быстро он понял, что его математических способностей не хватит, чтобы вникнуть в физические процессы, приведшие к возникновению Вселенной. Хотя его, как когда-то Генри Бастиана и Френсиса Крика, невероятно искушало желание разобраться в феномене сознания, он чувствовал, что современные технологии еще не позволяют достаточно далеко продвинуться в этом вопросе. Однако после обнаружения каталитической функции РНК Чеком и Олтменом он увидел новые перспективы в углублении понимания процессов происхождения жизни.
Начиная с 1984 г., Шостак активно занимался изучением рибозимов, пытаясь понять, какую роль они могли сыграть в самых первых клетках. Он пытался найти нечто вроде чаши Грааля для сторонников теории «мир РНК»: молекулу РНК, способную копировать саму себя. До тех пор никто не доказал, что подобная молекула существует или существовала когда-то. Однако перед Шостаком открылись такие возможности, которых не было у его предшественников.
Результаты эксперимента Миллера – Юри были известны всем, но вот осуществить следующие химические реакции, которые могли бы привести к появлению FLO, оказалось невероятно сложно. Прогресс в этом направлении был весьма незначительным, но Шостак решил, что к этой задаче можно подойти с другой стороны. К началу 1990-х гг. уже многое было известно о функционировании клетки, а современные методы биотехнологии позволяли создавать клетку с нуля. Вместо того чтобы воспроизвести все сложные химические стадии, необходимые для возникновения первых форм жизни, Шостак решил сразу создать в лаборатории живую клетку.