Эра синтетической жизни началась в 2002 г., когда исследователь из лаборатории на Лонг-Айленде впрыснул содержимое шприца в маленькую белую мышь. Через несколько минут мышь умерла от паралича – она получила смертельную дозу полиовируса. Этот вирус с геномом на основе РНК обладает удивительно простым репликационным циклом, и поэтому он очень быстро заставил клетки мыши многократно его воспроизводить, пока набитые сотнями копий вируса хозяйские клетки не начали лопаться и высвобождать новые копии вируса, поражающие все большее и большее число клеток мыши. Особенностью этой вирусной атаки было то, что она была запущена с помощью искусственной вирусной ДНК, сконструированной с нуля вирусологом Экардом Уиммером из Университета Стуони-Брук. Геном полиовируса был расшифрован летом 1981 г., и группе Уиммера оставалось «всего лишь» воспроизвести генетический рецепт – синтезировать простую цепочку примерно из 75 сотен A, G, C и U.
Технология синтеза ДНК была отработана в предыдущие годы. Синтез таких молекул, конечно, не детская игра, но вполне доступный метод в арсенале современных молекулярных биологов. Генетик Джон Крейг Вентер и его группа синтезировали целый бактериальный геном, который намного сложнее простого генома вируса. Даже самые маленькие и простые клетки содержат сотни сложных ферментов, а также генетический материал и другие элементы. В 2010 г. серия трудоемких лабораторных манипуляций была успешно завершена: над ней на протяжении десяти лет трудились 24 человека, а стоимость проекта составила 40 млн долларов. Эта последовательность содержала 1 077 947 пар оснований[64]
.Для создания бактерии Вентер с коллегами добавили синтезированные ими искусственные хромосомы в культуру обычных клеток Mycoplasma, подвергшихся воздействию электрического шока, под действием которого клетки поглощают ДНК из окружающей среды. По мере того как механизм хозяйских клеток начал работать на основе синтетического генома, стали появляться дочерние клетки, содержащие исключительно искусственные хромосомы. В этих хромосомах находились инструкции, необходимые для синтеза всех клеточных белков, так что в какой-то момент в культуре остались только искусственные клетки. Искусственный организм получил имя Синтия. Он содержал примерно в 80 раз больше генетической информации, чем геном полиовируса.
Это достижение открывало невиданные ранее возможности для применения биотехнологии в столь разных областях, как, например, производство синтетического топлива и медицина. Однако вскоре стало ясно, что Синтия не помогает определить источник информации, использовавшейся для построения самых первых клеток. Вентер, как до него Уиммер, по сути, скопировал инструкцию, которую природа создавала на протяжении 4 млрд лет. Это было потрясающее техническое достижение, но оно не давало ответа на вопрос,
Шостак задумался над созданием искусственной клетки еще в середине 1990-х гг. От Вентера и Уиммера его отличало то, что он хотел понять механизм
Шпигельман и его коллеги осуществили важный эксперимент, в котором показали, что молекулы РНК могут вести себя подобно живым организмам и самостоятельно эволюционировать (вполне в дарвиновском смысле) в пробирке. Шпигельман начал с вируса, называемого бактериофагом Qβ (ку-бета), который инфицирует всем известную кишечную палочку Escherichia coli. Геном Qβ состоит из РНК. Ученые очистили РНК, а также белок, ответственный за ее репликацию, а затем смешали их в пробирке, добавив туда все простые молекулы, необходимые белку для построения новых молекул РНК Qβ. Через некоторое время несколько капель смеси, уже содержавшей разные неполные копии исходной молекулы РНК, перенесли в новую пробирку, где были только белок и простые молекулы предшественников. Процедуру повторили 74 раза, каждый раз перенося из последней пробирки в новую по несколько капель смеси. При каждом пассаже отбиралась новая популяция мутантных молекул, служившей отправной точкой для «эволюции», осуществлявшейся в следующей пробирке.
В конце эксперимента обнаружилось нечто невероятное: РНК из пробирки № 74 состояла всего из 218 нуклеотидов, тогда как исходная молекула РНК бактериофага содержала около 4500 нуклеотидов. Произошло своеобразное соревнование, в котором выиграли самые короткие молекулы. И это понятно: чем короче молекулы, тем быстрее они копируются и, следовательно, вытесняют более длинные молекулы. Таким образом, Шпигельман воспроизвел в пробирке некий вариант естественного отбора для изолированных молекул РНК. Коллеги назвали полученные им молекулы «монстрами Шпигельмана».